Разложение представления в прямую сумму неприводимых представлений
с помощью оператора ВигнераМатериалы / Теория симметрии молекул / Разложение представления в прямую сумму неприводимых представлений
с помощью оператора ВигнераСтраница 1
Обозначим через М модуль, связанный с представлением Т. Пусть неприводимым представлениям Т1, Т2, …, Тt из канонического разложения представления согласно методу, описанному ранее (см. § 4), соответствуют неприводимые подмодули М1, М2, …, Мt. Разложение модуля М вида
(34)
называется каноническим разложением модуля М. Обозначим niMi=Li, так, что
. (35)
Неприводимые подмодули модулей Li обозначим
; i=1, 2, …, t. (36)
Эти модули нам необходимо найти.
Предположим, что задача решена. Следовательно, в каждом из модмодулей Mi(s) (s=1, 2, …, ni) найдена ортонормированная база , в которой оператор представлен матрицей Тi(g) неприводимого представления Т, полученного в результате действия (по правилу из § 3) оператора на базу по формуле
, j=1, 2, …, mi. (37)
В этом выражении можно считать, что mi – размерность неприводимого представления Ti (i=1, 2, …, t), причем - элементы базы с номером g из неприводимого подмодуля Mi. Разместим теперь элементы базы Li при фиксированном i следующим образом:
(38)
Справа в выражении (38) расположены базы модулей Mi(1), Mi(2), …, . Если же i изменять от 1 до t, то получим искомую базу всего модуля М, состоящего из m1n1+ m2n2+…+ mtnt элементов.
Рассмотрим теперь оператор
, (39)
действующий в модуле М (j фиксировано). Согласно теореме 2, - оператор проектирования. Поэтому этот оператор оставляет без изменения все базисные элементы (s=1, 2, …, ni), расположенные в j-м столбце выражения (38), и обращает в нуль все остальные векторы базы. Обозначим через Mij векторное пространство, натянутое на ортогональную систему векторов , стоящие в j-м столбце выражения (38). Тогда можно сказать, что является оператором проектирования на пространство Mij. Оператор известен, так как известны диагональные элементы матриц неприводимых представлений групп, а также оператор T(g).
Теперь можно решить нашу задачу.
Выберем ni произвольных базисных векторов в M: и подействуем на них оператором проектирования . Полученные векторы лежат в пространстве Mij и являются линейно независимыми. Они не обязательно ортогональны и нормированы. Ортонормируем полученную систему векторов согласно правилу из § 2. Полученную систему векторов обозначим eij(s) в соответствии с обозначениями, принятыми в предположении, что задача решена. Как уже обозначалось, здесь j фиксировано, а s=1, 2, …, ni. Обозначим eif(s) (f=1, 2, …, j-1, j+1, …, mi), остальные элементы базы модуля Mi размерности nimi. Обозначим через следующий оператор:
Смотрите также
Механизм формирования вторичных месторождений меди и цинка
В
месторождениях рудных полезных ископаемых сосредоточена ничтожная часть общего
запаса элементов, большая часть элементов рассеяна в земной коре. Следовательно,
для образования месторожден ...
Применение сингулярной матрицы в химии
...
Нобелий (Nobelium), No
Советские исследователи предложили назвать новый элемент Jl (жолиотий), в честь Фредерика Жолио-Кюри, американцы — Нобелий (No), в честь Альфреда Нобеля. Символы Jl, No можно было видеть в табли ...