Кинетика низкотемпературной радиационной постполимеризации тетрафторэтилена в стеклующихся фторорганических растворителяхМатериалы / Кинетика низкотемпературной радиационной постполимеризации тетрафторэтилена в стеклующихся фторорганических растворителяхСтраница 1
КИНЕТИКА НИЗКОТЕМПЕРАТУРНОЙ РАДИАЦИОННОЙ ПОСТПОЛИМЕРИЗАЦИИ ТЕТРАФТОРЭТИЛЕНА В СТЕКЛУЮЩИХСЯ ФТОРОРГАНИЧЕСКИХ РАСТВОРИТЕЛЯХ
Способность тетрафторэтилена (ТФЭ) к полимеризации существенный образом зависит от фазового состояния, в котором находится этот мономер. При радиолизе кристаллического ТФЭ и его последующем нагревании выше температуры плавления удается получить всего лишь 1—2% полимера [1]. Низкая молекулярная подвижность мономера в кристаллической решетке, а также эффективное протекание процесса обрыва цепей в области плавления не дают возможности образоваться достаточно длинным полимерным цепям. При расстекловывании растворов мономеров резко возрастает молекулярная подвижность, обеспечивающая эффективный рост цепи при одновременном подавлении процессов обрыва, вследствие чего достаточно высока скорость конверсии [2]. Так, исследование полимеризации при расстекловывании растворов ТФЭ в матрице перфторалканов показало, что полимеризация проходит до глубоких конверсии при температурах ниже точки плавления ТФЭ [3]. Цель настоящей работы — исследование кинетики радиационной постполимеризации ТФЭ при размораживании радиолизованных стеклообразных растворов мономера в индивидуальных перфорированных соединениях.
В качестве стеклующихся растворителей использовали перфтор-2,4-диметил-3-этилпентен-2 (ФМП)
перфтор-4-метилпентен-2
и 3-Р-гидротетрафторэтокси-6-гидро-4-оксаперфторгексец-2 (ГОГ)
Для анализа фазового состояния замороженных растворов ТФЭ и измерения скоростей полимеризации использовали калориметрическую методику [4].
Газообразный ТФЭ для очистки от ингибитора пропускали через раствор H2SO4 и колонку с активированным углем.
Навеску ФМП в стеклянной калориметрической кювете освобождали от растворенного воздуха, а затем туда же намораживали требуемое количество ТФЭ и кювету запаивали. При размораживании кюветы в ней образовывался гомогенный прозрачный раствор. Полученный раствор замораживали до 77 К и облучали лучами 60Со. Облученный образец помещали при 77 К в калориметр и следили за кинетикой тепловыделения, обусловленного полимеризацией ТФЭ в ходе размораживания. После проведения калориметрического эксперимента кювету вскрывали и после удаления растворителя и не прореагировавшего ТФЭ определяли выход полимера. Из сопоставления выхода полимера и измеренного интегрального тепловыделения была определена средняя теплота полимеризации ДЯ=(150±20) кДж/моль, т. е. практически такая же, как и определенная ранее величина для полимеризации ТФЭ в матрице перфторалканов [3]. Эту величину и использовали для расчета кинетических кривых полимеризации из калориметрических измерений.
При охлаждении со скоростью ~200 К-мин-1 ФМП полностью переходит в стеклообразное состояние. Переход из стеклообразного состояния в переохлажденную жидкость в ходе размораживания наблюдается при ГС^150К (рис. 1,а).
Растворы ТФЭ в ФМП (содержание ТФЭ до 23 вес.%) также полностью стеклуются, и при размораживании таких образцов на калориметрической кривой наблюдается только «ступенька» расстекловывания, отвечающая переходу стеклообразного раствора в переохлажденную жидкость. С увеличением концентрации ТФЭ в ФМП переход системы из стеклообразного состояния в переохлажденную жидкость монотонно смещается в область более низких температур (рис. 1, а, таблица). Ранее такая же тенденция наблюдалась для стеклообразных растворов ТФЭ в перфторалканах [3].
Смотрите также
Туннельный эффект в химии, физике
Данный
реферат содержит текста 12 страниц, рисунков 12, таблиц 1, список
использованной литературы 36 названий.
Ключевые
слова: туннельный эффект, туннельный диод, сканирующий микрос ...