Кинетика низкотемпературной радиационной постполимеризации тетрафторэтилена в стеклующихся фторорганических растворителях
Материалы / Кинетика низкотемпературной радиационной постполимеризации тетрафторэтилена в стеклующихся фторорганических растворителях
Страница 2

Постполимеризация ТФЭ в радиолизованных стеклообразных растворах ТФЭ и ФМП наблюдается в узком температурном интервале в области расстекловывания системы (рис. 1,6). С ростом исходной концентрации ТФЭ в растворе Тс монотонно смещается в область низких температур, и соответственно снижается температурная область протекания полимеризации. При этом уменьшается и интегральный выход полимера (таблица).

После достижения максимума скорость постполимеризации ТФЭ быстро падает. Это уменьшение скорости не может быть связано с выработкой мономера, поскольку его конверсия при достижении максимума скорости не превышает 10—20%. Естественно, связано это падение скорости с обрывом полимерных цепей. Обрыв растущих полимерных цепей может происходит либо из-за рекомбинации растущих макрорадикалов Rp* с радикалами, образовавшимися при радиолизе ФМП БФМП, время жизни которых весьма велико как в твердом, так и в жидком состояниях [5]

либо в реакции растущего макрорадикала ТФЭ с двойной связью ФМП с образованием малоактивного стабильного радикала, неспособного из-за стерических затруднений к дальнейшему продолжению цепи

В обоих случаях должен наблюдаться линейный обрыв полимерных цепей. Тогда спад скорости постполимеризации ТФЭw во времени должен описываться уравнением

где kf и к0 — соответственно константы скорости роста и обрыва полимерных цепей; [Rp*] 0 — максимальная концентрация растущих радикалов в системе; [М] — текущая концентрация мономера. Величина [М] в условиях одного эксперимента изменяется не более чем на 10—15%, и ее убылью можно пренебречь.

Рис. 1. Калориметрические кривые нагревания необлученных растворов ТФЭ в ФМП (а) и интегральная теплота полимеризации (б) для 1 (2), 9 (2), 17 (3), 25 вес.% ТФЭ (4)

Рис. 2. Изменение скорости полимеризации и> со временем для заключительной стадии полимеризации ТФЭ в ФМП для 1 (1), 2 (2), 4 {3), 6 (4), 9 (5), 17 (0), 25 вес.% ТФЭ (7)

Теперь, если полагать, что кр и к0 в интервале температур ДГ^Ю К изменяются слабо, то спад скорости постполимеризации для каждого эксперимента, представленного на рис. 1, б, должен спрямляться в координатах lg w от t, а из наклона этих прямых можно определить величины к.

Действительно, спад скорости полимеризации во всех экспериментах (рис. 1,6) хорошо спрямляется в указанных координатах (рис. 2). Поскольку при изменении исходной концентрации ТФЭ калориметрические пики полимеризации наблюдаются в различных областях температур, то величины к0 определены из наклона прямых на рис. 2 для разных температур (таблица). Из этих данных получена температурная зависимость к0, которая в аррениусовских координатах представлена на рис. 3.

Таким образом, для температурного интервала 110—155 К имеем ка= =0,1 ехр(-800Г) с-1.

Рис. 3. Изменение константы скорости обрыва к0 (1, 2) и константы скорости роста kv (3, 4) с температурой для процесса полимеризации ТФЭ в ФМП (1, 3) и ГОГ (2, 4)

Рис. 4. Зависимость выхода полимера от дозы предварительного облучения для 1 (1', 1") п 9 вес.% (2) раствора ТФЭ в ФМП по данным калориметрических (Г, 2) и гравиметрических (1) измерений

Страницы: 1 2 3 4

Смотрите также

Коррозионное растрескивание металлов
...

Модификация вторичных полимеров для изготовления изделий различного функционального назначения
...

Литий (Lithium), Li
Литий (лат. Lithium), Li, химический элемент 1 группы периодической системы Менделеева, атомный номер 3, атомная масса 6,941, относится к щелочным металлам. Природный Л. состоит из двух стабильных изо ...