Химические нестационарные процессы
в техникеМатериалы / Исследование условий возникновения колебательного режима в процессе окислительного карбонилирования фенилацетилена / Химические нестационарные процессы
в техникеСтраница 2
В таблице 2.2.2. приведены основные опубликованные к настоящему времени экспериментальные результаты, в которых показана эффективность перехода к искусственно создаваемым нестационарным условиям в каталитических реакторах по сравнению с традиционными стационарными способами.
Таблица 2.2.2.
Экспериментальные исследования искусственно создаваемых нестационарных условий в химических реакторах [17]
Наименование процесса |
Управление |
Эффект |
Окисление сернистого ангидрида на ванадиевом катализаторе |
Состав исходной смеси |
Увеличение степени превращения |
Полимеризация олефинов на катализаторе Циглера-Натта |
Концентрация водорода |
Изменение распределения молекулярных весов |
Полимеризация стирола |
Концентрация стирола и инициатора |
Увеличение выхода |
Получение этилацетата в стационарном слое катализатора |
Концентрация уксусной кислоты |
Уменьшение дезактивации катализатора |
Гидрирование этилена на платино-алюминиевом кат. |
Объёмная скорость исходной смеси |
Увеличение производительности |
Окисление этилена на катализаторе – серебро-носитель |
Состав исходной смеси |
Увеличение селективности |
Окисление бутана, циклогексана и пропилена на платине |
Состав исходной смеси |
Изменение селективности |
Хлорирование н-декана в двухфазном адиабатическом реакторе с мешалкой |
Концентрация н-декана |
Изменение селективности |
Дегидратация этанола в слое катализатора |
Температура хладоагента |
Увеличение скорости химического превращения |
Это лишь некоторые примеры, показывающие эффективность каталитического процесса в нестационарном режиме. Увеличивается производительность и избирательность, упрощается конструкция реактора. Общая теория таких процессов лишь зарождается, и поэтому сегодня можно только надеяться на быстрое достижение высокой эффективности новых промышленных процессов в искусственно создаваемых нестационарных режимах.
Смотрите также
Менделеев Дмитрий Ивановы и химия
Менделеев Дмитрий Ивановы-великий русский химик, открыватель периодического закона химических элементов. Родился 27 января 1834. в Сибири, в Тобольске.
Отец Менделеева был директором гимназии, но, ...
Марганец
Во второй половине ХХ века основную опасность для здоровья населения и проблему для здравоохранения стали представлять неинфекционные заболевания, в первую очередь болезни ЦНС, и сердечно-сосу ...
Медь и её свойства
МЕДЬ (лат. Cuprum), Cu (читается
«купрум»), химический элемент I группы периодической системы Менделеева,
атомный номер 29, атомная масса 63,546.
...