Средние и высокие потенциалы.
Материалы / Механизм и кинетика переходных процессов на межфазных границах электрохимических преобразователей энергии на основе низкотемпературных твердых электролитов / Средние и высокие потенциалы.
Страница 2

Обычно дырочную проводимость СТА вычисляют из восходящей анодной ветви ВАХ по (34). Однако при наличии ЭДС блокирующего электрода около 0,5 В этот участок ВАХ нельзя использовать, т. к. он находится в опасной близости к потенциалу разложения электролита (0,58 В). По-видимому, более надежным будет вычисление А из величины предельного тока (35). Во-первых, этот участок ВАХ находится достаточно далеко как от потенциала разложения, так и от потенциала выделения меди (-50 мВ), и, во-вторых, при катодной поляризации блокирующего электрода разложение электролита невозможно.

Из этого равенства следует, что величина дырочной проводимости зависит от концентрации электронных дефектов в электролите. Полученная величина Л {см. (36)} характеризует исследуемый неравновесный образец CU4RD с концентрацией электронных дефектов 1,25x3. Если гипотетически привести образец электролита в термодинамическое равновесие с медью, то концентрация дефектов будет составлять 4,17х1 см и, при независимости D 2+ от концентрации, дырочная проводимость, согласно (37), должна составить: 895747 р/см.

По-видимому, это и есть термодинамически обусловленная величина дырочной проводимости СиД.

В четвертой главе приведены результаты разработки методик выращивания монокристаллов медьпроводящих электролитов из растворов [12,35,36].

Постановка этих исследований обусловлены тем, что при росте кристаллов возможно удастся снизить концентрацию примеси Си2+ в материале кристаллов за счет добавления в ростовой раствор специальных восстановителей двухвалентной меди до одновалентного состояния.

Проведены расчеты химических равновесий ионов меди различной валентности в присутствии окислителя (кислорода воздуха) и различных восстановителей. На основании расчетов практически подобраны подходящие растворители и восстановители.

Разработаны:

• Конструкция установки для выращивания кристаллов методами снижения температуры и отбора растворителя;

• Методика химического анализа кристаллов.

Монокристаллы электролитов системы CuCl – RbCl. Методом понижения температуры выращены кристаллы из азеотропного водного раствора соляной кислоты без доступа воздуха в присутствии металлической меди как восстановителя ионов двухвалентной меди до одновалентного состояния. Однако при дифференциально-термическом анализе происходит потеря веса таких кристаллов. Следовательно, в процессе роста в кристалл влючаются кристаллизационная вода и НС1.

При изотермическом выращивании (около 110 °С) кристаллов методом отбора растворителя исследована зависимость содержания CuCl в кристаллах от концентрации CuCl в растворе. Были получены монокристаллы электролитов состава С18 и близких к Cu2RbC3 и СиД.

Значения потенциала индифферентного электрода в контакте с материалом кристаллов системы CuCl – RbCl не превышают 0,15…0,20 В. Это свидетельствует о значительном снижении концентрации Си в кристаллах электролитов по сравнению с промышленными электролитами и, следовательно, перспективности использования материала кристаллов в производстве преобразователей энергии на базе медьпроводящих электролитов.

Кристаллы электролитов системы CuCl-CuI-RbCl. Кристаллы выращены методом отбора растворителя из раствора аммиака в воде при 70° без доступа воздуха в присутствии СО как восстановителя ионов двухвалентной меди до одновалентной. Ионная проводимость кристаллов имеет порядок 102… 10 См/см.

Страницы: 1 2 3 4 5

Смотрите также

Теоретическое изучение возможности изомеризации карбенов в четырех- или шестичленные гетероциклы
...

Истории Русского химического общества
Для решения многих задач можно использовать одну из важнейших отраслей науки и естествознания - химическую науку. Современная химия развивается стремительными темпами, плодотворно сотруднич ...

Предмет аналитической химии. История и применение
...