«Гидролиз солей»Материалы / Химический эксперимент по неорганической химии в системе проблемного обучения / «Гидролиз солей»Страница 2
Учащийся: Видимо, какая-то частица соли отрывает от молекулы воды частицу OH–. Отрицательную частицу от молекулы воды может оторвать положительная частица из соли.
Учитель: Что же общего у катионов Cu2+, Pb2+, Fe3+? Почему именно они присоединяют гидроксид-ионы? Почему этого не происходит в случае катионов Na+, K+?
Учащийся: Гидроксиды Сu(OH)2, Pb(OH)2, Fe(OH)3 – cлабые основания, а NaOH, KOH – сильные. Сильные основания в растворе полностью диссоциируют на ионы.
Растворы второй группы солей изменяют фиолетовую окраску лакмуса на синюю. Значит, в их растворах есть гидроксид-ионы. Остатки слабых электролитов – анионы кислотных остатков – взаимодействуют с молекулами воды с образованием ионов OH–. В растворах солей третьей группы нет свободных ионов H+ и OH– . С водой не взаимодействуют остатки сильных электролитов (кислот и оснований).
В результате подобных рассуждений учащиеся самостоятельно приходят к выводам.
1.
Если соль образована сильной кислотой и слабым основанием, реакция ее раствора будет кислая. Причина кислой среды – взаимодействие катиона (остатка слабого основания) с молекулами воды. Такое взаимодействие называется гидролизом по катиону.
Fe3+ + 3НОН → Fe(OH)3 + 3H+
2.
Если соль образована слабой кислотой и сильным основанием, реакция ее раствора будет щелочная. Причина щелочной среды – взаимодействие аниона (остатка слабой кислоты) с молекулами воды. Этот процесс называется гидролизом по аниону.
CO32- + 2HOH → H2CO3 + 2OH–
3.
Если соль образована сильной кислотой и сильным основанием, реакция ее раствора будет нейтральной. Катионы металла и анионы кислотного остатка таких солей не образуют прочных связей с молекулами воды. Как следствие, в растворах таких солей нет ионов H+ и OH–.
Учитель: Реакция солей, образованных сильной кислотой и сильным основанием обратима, так как в ходе неё не образуется слабый электролит.
KBr + HOH <=> KOH + HBr
Таким образом, соли, образованные сильной кислотой и сильным основанием имеют нейтральную реакцию среды, но гидролизу не подвергаются
Учащийся: А как ведут себя в растворе соли, образованные слабым основанием и слабой кислотой?
Учитель: Попробуйте самостоятельно спрогнозировать результат опыта и аргументировать свой прогноз.
Учащийся: Вероятно, реакция раствора такой соли будет нейтральной, ведь ионы H+, образованные при взаимодействии катиона – остатка слабого электролита – с молекулами воды, будут связываться ионами OH–, образованными при гидролизе по аниону.
К фиолетовому раствору лакмуса добавляем раствор ацетата аммония. Цвет не изменяется – реакция раствора нейтральная.
Ученики: составляют уравнение реакции гидролиза ацетата аммония в молекулярной, полной и краткой ионной форме:
CH3COONH4 + HOH → NH4OH + CH3COOH
CH3COO – + NH4 + + HOH → NH4+ + OH – + CH3COO– + H+
HOH → H+ + OH –
Учитель: Поэкспериментируем еще с одной солью – сульфидом аммония (NH4)2S. При его добавлении фиолетовый раствор лакмуса становится синим. Проблема!
Учащиеся: составляют уравнение реакции гидролиза сульфида аммония в молекулярной форме:
(NH4)2S + 2HOH → 2NH4OH + H2S
Учитель: Сила и слабость электролита – понятия относительные. Исходя из данных эксперимента (посинение лакмуса) сила электролита – сероводородной кислоты – оказалась меньше, чем сила гидроксида аммония.
Учащийся: гидроксид аммония лучше продиссоциировал в растворе, поэтому реакция раствора сульфида аммония щелочная.
2NH4 + + S2- + 2HOH → 2NH4 + + 2OH – + H2S↑
S2- + 2HOH → 2OH – + H2S↑
Учащийся: «Как узнать, какой электролит сильнее?»
Учитель: рассказывает о константах диссоциации слабых кислот и оснований, учит пользоваться справочными данными. В заключении учитель анализирует и подводит итоги по таблице «Окраска лакмуса в растворах солей»:
Соль |
Окраска раствора соли при добавлении индикатора (лакмуса) |
Реакция среды |
Na2CO3 |
синий |
щелочная |
CuSO4 |
красный |
кислая |
CuCl2 |
красный |
кислая |
Pb(NO3)2 |
красный |
кислая |
FeCl3 |
красный |
кислая |
Na2S |
синий |
щелочная |
K2SO3 |
синий |
щелочная |
CH3COONa |
синий |
щелочная |
KBr |
фиолетовый |
нейтральная |
NaNO3 |
фиолетовый |
нейтральная |
CH3COONH4 |
фиолетовый |
нейтральная |
(NH4)2S |
синий |
щелочная |
Смотрите также
Стандартизация измерения рН в неводных средах. Методы определения рН стандартных буферных растворов
Данная курсовая
работа содержит 3 раздела, 35 страниц и 2 таблицы.
Целью работы
является изучение кислотности неводных растворов, методы ее определения и
стандартизация измерения, а такж ...
Серебро (Argentum), Ag
Серебро - химический элемент I группы периодической системы Менделеева, атомный номер 47, атомная масса 107,868; металл белого цвета, пластичный, хорошо полируется. В природе находится в виде смеси дв ...
Металлы и сплавы, применяемые в полиграфии
Металлы хорошо проводят тепло и электрический ток, т. е. они
теплопроводны и электропроводны. Самую высокую электропроводность имеют серебро
Ag, медь Си, алюминий Al, золото Au и железо Fe. ...