Твердофазная полимеризация 1,4-бис-(л-ацетиламинофенил)бутадиина, оптические и фотоэлектрические свойства образующегося полимераМатериалы / Твердофазная полимеризация 1,4-бис-(л-ацетиламинофенил)бутадиина, оптические и фотоэлектрические свойства образующегося полимераСтраница 3
В электронных спектрах поглощения кристаллов ААФБ с малой конверсией мономера (рис. 3) полоса поглощения полимерных молекул имеет ряд достаточно четко выраженных максимумов при 680, 635, 585, 565 и 530 нм. С ростом конверсии полоса поглощения полимера резко расширяется и сдвигается в коротковолновую область спектра. По-видимому, в самой начальной стадии полимеризации образуется упорядоченный раствор полимерных цепей в неповрежденной или слабо поврежденной матрице мономера. Накопление полимера приводит к нарушению мономерной решетки и к переходу цепей в менее упорядоченное состояние. Аналогичное изменение состояния полимера происходит, очевидно, и при механическом растирании кристалла, вследствие чего спектры диффузного отражения порошка существенно отличаются от спектра поглощения кристалла. Изменение конформации полимерных цепей в результате повреждения мономерной решетки сопровождается нарушением системы сопряженных связей и сдвигом поглощения в коротковолновую область. Раствор полимера ААФБ в метаноле в отличие от кристаллов полимера окрашен в красный цвет: спектр поглощения раствора имеет широкую полосу с максимумом при 540 нм.
Фотополупроводннковые свойства были обнаружены у всех исследованных образцов полимера ААФБ с разной степенью конверсии. Для получения сопоставимых результатов спектры фототока отнесены к единице падающей энергии. Для большинства исследованных образцов фототок приблизительно линейно зависит от интенсивности падающего света (1012— 1014квант/см2с) во всем исследованном спектральном диапазоне. Фотопроводимость в направлении характерного удлинения кристаллических образцов, совпадающего, по-видимому, с направлением полимерных цепей, в 102 раза больше, чем в перпендикулярном направлении. Спектры фотопроводимости представляют собой кривые, монотонно возрастающие на три порядка в спектральной области от 900 до 300 нм (рис. 4). Спектры фотопроводимости не повторяют спектры поглощения. В области максимального поглощения кристаллических образцов (530—680 нм) не наблюдается максимума фотопроводимости. Аналогичный результат получен и в работе [8] для полидиацетилен-бис-(л-толуолсульфоната). Авторы этой работы показали, что поглощение кристалла в области 550—630 нм обусловлено возбуждением фотоэлектрически неактивных экситонных состояний полимерной макромолекулы, тогда как образование носителей происходит в результате более коротковолнового перехода валентная зона — зона проводимости полимерной цепи. При этом поглощение, обусловленное переходом зона — зона, малоинтенсивно и скрыто сильным экситонным поглощением кристалла.
Мономер ААФБ обладает высоким удельным темновым сопротивлением (0,5 -1015 Ом-см). Фотоэлектрическая чувствительность мономерного образца мала ( 1,2-10-8 А/Вт) и обусловлена образованием в кристалле некоторого количества макромолекул под воздействием облучения видимым светом. Увеличение концентрации и подвижности носителей с ростом количества и длины полимерных цепей при полимеризации приводит к увеличению фотоэлектрической чувствительности в полимерных образцах со степенью конверсии 8% до 6,0-10~7 А/Вт и к уменьшению темнового сопротивления до 0.5-1013 Ом-см.
После частичной экстракции
мономера спиртом фотоэлектрическая чувствительность увеличивается на три порядка (5^акс =3,0-10-4 А/Вт) и темновое сопротивление уменьшается до 0,5-1010 Ом-см.
Рис. 4. Спектральная фотоэлектрическая чувствительность кристаллов ААФБ мономера (1), полимера со степенью конверсии 8% (2) и полимера после обработки спиртом (3)
При обработке заполимеризованных кристаллов спиртом непрореагировавший мономер удаляется лишь из поверхностных слоев кристалла (таким способом отмывается лишь ~10% от общего количества непрореагировавшего мономера), и в этих слоях, по-видимому, происходит агрегация полимерных молекул. Поэтому связанное с такой обработкой резкое увеличение темновой и фотопроводимости свидетельствует о том, что эта проводимость является поверхностной. Обработка образцов растворителем с добавлением 12 сопровождается дальнейшим увеличением фотоэлектрической чувствительности с появлением дополнительного максимума в длинноволновой области спектра (700 нм). По-видимому, это обусловлено тем, что атомы играют роль легирующих примесей, локализованных на дефектах кристаллической решетки вблизи поверхности кристалла.
Смотрите также
Осмий (Osmium), Os
Попробуйте подсчитать, какой путь совершает кончик пера автоматической ручки при движении по бумаге только в пределах одной тетради в 12 листов. Пусть это будет зависеть от величины букв, манеры письм ...
Химия белка
Биохимия - это
наука о химических и физико-химических процессах, которые протекают в живых
организмах и лежат в основе всех проявлений жизнедеятельности. Биохимия
возникла на стыке органиче ...
Галлий (Gallium), Ga
Галлий - химический элемент III группы периодической системы Д. И. Менделеева, порядковый номер 31, атомная масса 69,72; серебристо-белый мягкий металл. Состоит из двух стабильных изотопов с массовыми ...