Представления в пространстве 3n координат смещения молекулыМатериалы / Соответствие между молекулами и группами симметрии / Представления в пространстве 3n координат смещения молекулыСтраница 1
Действия операций симметрии на деформированную молекулу можно представить аналитически линейным преобразованием, связывающим новые смещения X`, Y`, Z` со старыми X, Y, Z. Например, преобразование смещений атомов в ионе NO3 при применении отражения в плоскости sV
Х1 ® Х1` = 1/2 Х2 + 3/2 Y2
Y1 ® Y1` = 3/2 Х2 - 1/2 Х2
Z1 ® Z1` = Z1
Х2 ® Х2` = 1/2 Х1 + 3/2 Y1
Y2 ® Y2` = 3/2 Х1 - 1/2 Y1
Z2 ® Z2` = Z2
Х3 ® Х3` = 1/2 Х3 + 3/2 Y3
Y3 ® Y3` = 3/2 Х3 - 1/2 Y3
Z3 ® Z3` = Z3
Х4 ® Х4` = 1/2 Х4 + 3/2 Y4
Y4 ® Y4` = 3/2 Х4 - 1/2 Y4
Z4 ® Z4` = Z4
т.е. матрица преобразования X¢=А*X такова:
Потенциальная и кинетическая энергия являются инвариантными по отношению к данному преобразованию. Если два такие преобразования представляют собой операции симметрии молекулы, то их произведение тоже должно представлять операцию симметрии молекулы. Существуют также тождественное преобразование, матрица которого имеет только единицы на главной диагонали. Т.к. такая система линейных преобразований обладает всеми необходимыми свойствами группы, можно сказать, что эти преобразования, также как и сами операции составляют группу.
Группа, образованная самими физическими операциями симметрии и группа, образованная линейными преобразованиями, очевидно, тесно связаны между собой - каждый из элементов одной группы взаимно однозначно соответствует элементу другой группы. Аналогично обстоит дело и с произведениями элементов. Такие группы изоморфны, а группа линейных преобразовании (линейных подстановок) будет осуществлять представление группы операции симметрии. Координаты Хi, Yi, Zi, с помощью которых эти представления записываются, называются базисом представления.
Система координат, в которой были записаны преобразования, была выбрана произвольно, но подобные результаты получились бы в любой другой системе координат. В матрице появились бы другие коэффициенты, но общие заключения остались бы справедливыми. Действительно, пусть bk - новые, а ai - старые координаты, связь между которыми дается следующим выражением:
bk= S аkjaj k,j=1,2,3 . .3N
Это преобразование может быть просто поворотом системы на некоторый угол. Существует также обратное преобразование:
ai= S (аin) - 1bn i,n=1,2,3 . .3N
Если координаты смещений атомов ai при преобразовании R переходят в координаты ai` и описываются таким преобразованием:
ak` = S Rkjaj k,j=1,2,3 . .3N,
то новые координаты bk` можно получить:
bk`=S аkjaj`=S аijRjiai= SakjSRji (ain) - 1an= S (S аkjRji (ain) - 1) bn
Когда два представления отличаются только тем, что базисные координаты одного являются линейными комбинациями координат другого, говорят, что представления эквивалентны, т.е. представление Rji эквивалентно представлению SаkiRji (аin) - 1. Эквивалентность представлений может быть установлена на основании того, что соответствующие представления имеют одинаковый spur, или характер, т.е. величина
c (R) = SRii=R11+R22+R33+ . +R3N3N
постоянна для данного преобразования симметрии R. Легко показать, что преобразования, соответствующие эквивалентным представлениям имеют одинаковые характеры представлений.
c (R) =S [amiRik (akm) - 1] =Rik [ami (akm) - 1] =Rikdki=Rii=c (R)
Для линейного преобразования к новым координатам справедливо (аkm) - 1ami=dki.
Предположим, что мы каким-то образом нашли преобразование от декартовых координат смещения X, Y, Z к нормальным координатам Qi. Известно, что в этом случае координаты при преобразованиях симметрии не смешиваются, а потенциальная и кинетическая энергии имеют вид квадратичной функции:
Смотрите также
Магний
...
Кальций и его роль для человечества
Кальций — элемент
главной подгруппы второй группы, четвёртого периода периодической системы
химических элементов Д. И. Менделеева, с атомным номером 20. Обозначается
символом Ca (лат. Calci ...