Люминесцентный метод
Материалы / Методы определения концентрации растворённого кислорода в воде / Люминесцентный метод
Страница 2

В работе М.А. Константиновой-Шлезингер описан метод определения малых концентраций кислорода в воде. В качестве реагента использован адреналин. Этот реагент в щелочном растворе не флуоресцирует.

Малейшие следы кислорода вызывают разгорание яркой желто-зеленой флуоресценции. В отсутствие кислорода наблюдается едва заметная флуоресценция молочно-синего цвета.

Раствор щелочи для проведения этой реакции рекомендуется брать 24–25%-ным. При меньшей концентрации щелочи реакция не останавливается на первой стадии окисления адреналина и вновь может образовываться нефлуоресцирующий продукт, что ухудшает воспроизводимость метода. Метод позволяет определять кислород в воде в количестве около 2 мкг в 1 мл.

Для обнаружения следов кислорода использовали гашение флуоресценции некоторых красителей, сорбированных силикагелем. Из числа испытанных красителей лучшие результаты были получены при применении трипафлавина в количестве 0,025 – 0,005 ммоль на 10 г. предварительно очищенного силикагеля. Указывается, что несколько видоизмененный метод Г. Каутского и А. Хирша позволяет обнаруживать 0,00007 мкг кислорода.

Датчик LDO для измерения концентрации кислорода люминесцентным методом:

Датчик Lange LDO включает два основных компонента (см. рис. 2):

1) Крышка датчика со слоем люминофора, нанесенным на прозрачную подложку.

2) Корпус датчика с синим и красным СИД (светоизлучающие диоды), фотодиодом и электронным преобразователем сигнала (анализатором).

В рабочем положении крышка накручивается на датчик и погружается в воду. Молекулы кислорода в анализируемом образце вступают в непосредственный контакт с люминофором.

В процессе измерения синий СИД испускает импульс света, который проходит через прозрачную подложку и частично поглощается слоем люминофора. Электроны в молекулах люминофора при этом переходят на более высокий энергетический уровень (возбужденное состояние). В течение нескольких микросекунд электроны возвращаются в исходное состояние через несколько промежуточных энергетических уровней, испуская разницу в энергиях в виде более длинноволнового (красного) излучения.

Если в этот момент молекулы кислорода находятся в контакте с люминофором,

· они могут поглотить энергию электронов, находящихся в возбужденном состоянии и сделать возможным их возвращение в исходное состояние без испускания кванта света (безизлучательный переход). С увеличением концентрации кислорода этот процесс будет приводить к уменьшению интенсивности испускаемого «красного» излучения (люминесценции).

· они вызывают вибрацию в люминофоре, что, в результате, приводит к более быстрому переходу электронов из возбужденного в основное состояние. Таким образом, время люминесценции сокращается.

Оба аспекта влияния кислорода можно отнести к явлению, обозначаемому термином «гашение люминесценции». Их влияние показано на рис. 4: импульс света, посылаемый синим СИД в момент времени t=0 попадает на слой люминофора, который впоследствии испускает красное излучение. Максимальная интенсивность (Imax) и время затухания красного излучения зависят от окружающей концентрации кислорода (время затухания определяется как время между началом возбуждения и падением уровня красного излучения до величины 1/e от максимальной интенсивности).

Для определения концентрации кислорода анализируется время затухания люминесценции. Таким образом, измерение концентрации кислорода сводится к чисто физическому измерению времени.

Отклик сенсора постоянно регулируется при помощи красного СИД, смонтированного в датчике. Перед каждым измерением он испускает луч света с известными характеристиками, который отражается от люминофора и попадает в оптическую систему. Благодаря этому, без задержки происходит определение и компенсация любых изменений измерительной системы.

Страницы: 1 2 

Смотрите также

Современное содержание термина "активация"
Все теории катализа старались ответить на следующие вопросы: 1.                Каким образом катализатор меняет ...

Неон (Neonum), Ne
Неон - химический элемент VIII группы периодической системы Менделеева, относится к инертным газам, атомный номер 10, атомная масса 20,179. На Земле присутствует главным образом в атмосфере, содержани ...

Теория симметрии молекул
Понятие симметрии играет важную роль во всех естественных науках. Свойствами симметрии обладают структуры многих молекул, ионов, образуемых ими реагирующих систем. Математической основой ...