Строение и форма ультрадисперсных частицПериодическая система / Микроэмульсионный метод получения оксида цинка / Строение и форма ультрадисперсных частиц
Вопросы, касающиеся механизмов образования и строения наноразмерных частиц, относятся к числу наиболее важных и принципиальных вопросов коллоидной химии. Действительно, ультрадисперсные частицы – это своего рода «элементарные частицы» коллоидной химии. Переход от простого качественного определения самого понятия дисперсных частиц к определению их количественных параметров и соотношений требует детального выяснения структуры ультрадисперсных частиц в различных коллоидных системах – золях, мицеллярных растворах, микроэмульсиях, гелях и так далее.
Ранняя концепция строения твёрдых ультрадисперсных частиц была основана на предположении о том, что их структура аналогична структуре макрофазы того же вещества. Однако дальнейшее изучение процесса зарождения и роста новой фазы показало, что в зависимости от условий кристаллизации (величины пересыщения или переохлаждения, наличия примесей и ряда других причин) из растворов могут образовываться как аморфные, так и кристаллические ультрадисперсные частицы [10 – 11].
Веймарном было обнаружено, что форма образующихся при кристаллизации из раствора частиц BaSO4 зависит от степени пересыщения раствора. Так, им были получены высокодисперсные золи, хлопьевидные структуры, хорошо огранённые микрокристаллы и кристаллы иглоподобной формы. Важную роль играет и температура, при которой проводится синтез наночастиц. Например, наночастицы диоксида титана, полученные золь-гель методом, при низкой температуре имеют вид стержней, а при высокой – бипирамидальных кристаллов [12]. Ещё одним подтверждением разнообразия форм наночастиц служит образование дендритов при кристаллизации из расплавов и растворов [13].
Разнообразие форм связано с тем, что процессы образования новой фазы (процессы самоорганизации) протекают в сугубо неравновесных условиях, причём степень совершенства структуры зависит от того, насколько условия проведения кристаллизации отклоняются от равновесных. Например, при синтезе алмаза из плотной газовой фазы и плазмы более совершенная структура образуется в более неравновесных условиях [14].
Сильное влияние на процесс кристаллизации могут оказывать ПАВ, присутствующие в растворе. В зависимости от природы и концентрации они могут изменять скорость образования и роста зародышей новой фазы, распределение наночастиц по размерам, а также форму кристаллов [15 – 17]. Все эти эффекты связаны с избирательной адсорбцией молекул или ионов ПАВ на различных гранях образующихся кристаллов и, как следствие, с замедлением роста одних граней по сравнению с другими [18]. Кроме того, природа ПАВ оказывает влияние и на полиморфизм образующихся соединений. Например, в работе [19] показано, что при кристаллизации оксалата кальция в растворах моногексадецилового эфира оксаэтиленгликоля образуется моногидрат оксалата кальция, а в растворах додецилсульфата натрия – дигидрат.
Важной особенностью процессов кристаллизации, приводящих к образованию наночастиц, является то, что их форма не может быть описана методами обычной геометрии. Для описания таких систем привлекается фрактальная геометрия, поскольку при сильных отклонениях от равновесия, а, следовательно, и высоких значениях движущей силы процесса кристаллизации, неустойчивость границы раздела фаз приводит, как правило, к формированию фрактальных структур [20].
Интересными представляются результаты работ [21 – 22], в которых показано, что при совместной кристаллизации галогенидов аммония и йодида цезия из высокопересыщенных паров сначала образуются высокодисперсные первичные монокристаллы. Благодаря развитой межфазной поверхности образовавшаяся дисперсная система обладает большим избытком энергии, поэтому в ней протекают процессы агрегирования, сопровождающиеся срастанием исходных монокристаллических частиц приблизительно равных размеров. В результате такого агрегирования образуются псевдомонокристаллы.
Процессы образования ультрадисперсных систем при кристаллизации металлов ещё более сложны и разнообразны. По существу, изучение этих процессов послужило основанием для зарождения нового направления – химии кластеров [23 – 24]. Кластерные частицы занимают промежуточное положение между моноядерными соединениями и дисперсными частицами. Металлические частицы с d < 30 нм можно получить методами газофазной нуклеации, криогенного роста, а также проведением реакций в полимерной матрице и в обратных микроэмульсионных системах [25 – 29].
В заключение следует отметить, что достаточно полная количественная теория зарождения и роста коллоидных частиц пока не создана [30].
Смотрите также
Качественное определение урана и тория в твердых материалах
Цель работы
1.Освоить
методику качественного определения урана и тория в рудах, концентратах
2.Определить,
присутствует или нет уран и торий в пробах руды
...
Курс лекций по Коллоидной химии (Часть 1)
...
Углерод и его основные неорганические соединения
Углерод (лат. Carboneum) С – химический элемент IV группы периодической системы
Менделеева: атомный номер 6, атомная масса 12,011(1). Рассмотрим строение атома
углерода. На наружном энергети ...