Развитие трещинПериодическая система / Коррозионное растрескивание металлов / Развитие трещинСтраница 2
Изложенное рассмотрение процесса возникновения и развития трещины более точно характеризует природу коррозионного растрескивания. На прерывистый характер развития трещин указывают
Эделеану, Джильберт и Хадден, Фармери для алюминиевых сплавов, а также Преет, Бек и Фонтана для магниевых сплавов. Очевидно, нет сомнения, что при растрескивании материал подвергается серии отдельных механических разрушений, которые, соединяясь вместе, образуют трещину. Кроме того, фильмы и микрофотографии, имеющиеся в литературе, показывают, что растрескивание происходит путем продвижения развивающейся трещины. Можно ожидать, что изложенный механико-электрохимический механизм коррозионного растрескивания может достаточно точно объяснить наблюдаемые явления процесса коррозионного растрескивания, среди которых основными являются следующие:
1. Трещины не возникают и не развиваются под действием сжимающих напряжений.
2. Более высокие напряжения, особенно напряжения, близкие к пределу текучести, вызывают более высокую концентрацию напряжений и соответственно уменьшают устойчивость металла против растрескивания.
3. Для создания достаточной концентрации напряжений и последующей деформации необходим какой-то минимум напряжений, тот минимальный предел напряжений не является абсолютной величиной и зависит от формы образца и условий испытания. Следует также указать, что предел упругости или текучести на отдельных микроскопических участках может быть значительно ниже, чем текучесть сплава.
4. В том случае, когда разрушение металла происходит почти сразу после образования первоначальной трещины, время до растрескивания зависит от времени, необходимого для зарождения мелких коррозионных трещин. Важным фактором является также состояние поверхности. При разрушении, включающем ряд повторных циклов процесса растрескивания, общее время до разрушения определяется как суммарное время образования серии коррозионных трещин. Не наблюдается значительного отличия во времени до разрушения образцов, нагруженных в течение всего испытания, и образцов, нагруженных незадолго до разрушения; время, необходимое для коррозионного растрескивания, не зависит существенно от условий создания напряженного состояния металла.
5. Доказательством того, что наибольшее влияние приложенные напряжения оказывают незадолго до разрушения, служит самопроизвольное растрескивание металла после зарождения первоначальной трещины. Если процесс растрескивания происходит за счет образования серии мелких трещин и по мере развития трещины металл приближается к неустойчивому состоянию, то при наличии деформированных участков металлапроизойдет самопроизвольное развитие трещины и полное разрушение металла.
6. Катодная защита препятствует развитию локальных коррозионных разрушений. При наложении катодного тока увеличиваются радиусы возникающих коррозионных углублений, в результате чего коррозионный процесс может происходить только при увеличении напряжений. Поэтому для предотвращения коррозионного растрескивания при повышенных напряжениях должна применяться более эффективная защита, которая будет препятствовать возникновению локальных коррозионных разрушений и созданию концентраторов напряжений.
Полагают, что если развитие трещины достигнет такого значения, что создаются условия для самопроизвольного растрескивания, то применение катодной защиты не окажет никакого влияния.
7. Если время до растрескивания относительно мало и развивается только одна или несколько трещин, то не наблюдается существенного отличия в коррозии (в количестве металла, переходящего в раствор) напряженных и ненапряженных образцов, как показал, например, Эделеану для сплава А1—7% Мg, так как развитие трещин идет практически только за счет механического разрушения. С другой стороны, процесс химического разрушения приводит к переходу в раствор измеримого количества металла, но переход металла в раствор не будет существенно зависеть от времени до разрушения.