Гидродинамические режимы.
Периодическая система / Конструкции абсорберов / Гидродинамические режимы.

Насадочные абсорберы могут работать в различных гидродинамических режимах.

Первый режим –– пленочный –– наблюдается при небольших плотностях орошения и малых скоростях газа. Количество задерживаемой в насадке жидкости при этом режиме практически не зависит от скорости газа.

японские витамины, а затем приобрести японские товары

Второй режим –– режим подвисания. При противотоке фаз вследствие увеличения сил трения газа о жидкость на поверхности соприкосновения фаз происходит торможение жидкости газовым потоком. В результате этого скорость течения жидкости уменьшается, а толщина ее пленки и количество удерживаемой в насадке жидкости увеличиваются. В режиме подвисания с возрастанием скорости газа увеличивается смоченная поверхность насадки и соответственно –– интенсивность процесса массопередачи. В режиме подвисания спокойное течение пленки нарушается: появляются завихрения, брызги, т.е. создаются условия перехода к барботажу. Все это способствует увеличению интенсивности массообмена.

Третий режим –– режим эмульгирования –– возникает в результате накопления жидкости в свободном объеме насадки. Накопление жидкости происходит до тех пор, пока сила трения между стекающей жидкостью и поднимающимся по колонне газом не уравновесит силу тяжести жидкости, находящейся в насадке. При этом наступает обращение или инверсия фаз (жидкость становится сплошной фазой, а газ –– дисперсной). Образуется газо-жидкостная дисперсная система, по внешнему виду напоминающая барботажный слой (пену) или газо-жидкостную эмульсию. Режим эмульгирования начинается в самом узком сечении насадки, плотность засыпки которой, как указывалось, неравномерна по сечению колонны. Путем тщательного регулирования подачи газа режим эмульгирования может быть установлен по всей высоте насадки. Гидравлическое сопротивление колонны при этом резко возрастает.

Режим эмульгирования соответствует максимальной эффективности насадочных колонн, прежде всего за счет увеличения поверхности контакта фаз, которая в этом случае определяется не только (и не столько) геометрической поверхностью насадки, а поверхностью пузырьков и струй газа в жидкости, заполняющей весь свободный объем насадки. Однако при работе колонны в таком режиме ее гидравлическое сопротивление относительно велико.

В режимах подвисания и эмульгирования целесообразно работать, если повышение гидравлического сопротивления не имеет существенного значения (например, в процессах абсорбции, проводимых при повышенных давлениях). Для абсорберов, работающих при атмосферном давлении, величина гидравлического сопротивления может оказаться недопустимо большой, что вызовет необходимость работать в пленочном режиме. Поэтому наиболее эффективный гидродинамический режим в каждом конкретном случае можно установить только путем технико-экономического расчета.

В обычных насадочных колоннах поддержание режима эмульгирования представляет большие трудности. Имеется специальная конструкция насадочных колонн с затопленной насадкой, называемых эмульгационными (рис.XI-14). В колонне 1 режим эмульгирования устанавливают и поддерживают с помощью сливной трубы, выполненной в виде гидравлического затвора 2. Высоту эмульсии в аппарате регулируют посредством вентилей 3. Для более равномерного распределения газа по сечению колонны в ней имеется тарелка 4. Эмульгационные колонны можно рассматривать как насадочные лишь условно. В этих колоннах механизм взаимодействия фаз приближается к барботажному.

Пределом нагрузки насадочных абсорберов, работающих в пленочном режиме, является точка эмульгирования, или инверсия. В обычных насадочных колоннах пленочный режим неустойчив и сразу переходит в захлебывание. Поэтому эту точку называют точкой захлебывания насадочных колонн. С увеличением скорости орошения снижается предельная скорость газа. В точке инверсии скорость газа уменьшается также с увеличением вязкости жидкости и снижением ее плотности. При одинаковых расходах газа и жидкости скорость газа, соответствующая точке инверсии, выше для более крупной насадки.

Четвертый режим –– режим уноса, или обращенного движения жидкости, выносимой из аппарата газовым потоком. Этот режим на практике не используется.

Смотрите также

Элементы s-блока периодической системы
...

Химический элемент хром
Элемент №24. Один из самых твердых металлов. Обладает высокой химической стойкостью. Один из важнейших металлов, используемых в производстве легированных сталей. Большинство соединений хром ...

Сульфат кальция, кристаллогидрат и безводная соль
Химия элементов и их соединений имеет огромное значение в современной неорганической химии. Среди 30 тыс. неорганических соединений важное место занимает сульфат кальция. Довольно большие з ...