Компьютерное моделирование комплексометрического титрования смесей металлов
Периодическая система / Компьютерное моделирование комплексометрического титрования смесей металлов
Страница 1

Постановка задачи и выбор модели.

Моделирование комплексометрического титрования металлов позволяет в ходе вычислительного эксперимента провести априорную оптимизацию, что особенно важно при создании новых методик анализа. Известен ряд моделей и компьютерных программ на их основе [1-3], однако возможность титрования смесей металлов в подобных моделях обычно не предусматривалась(1) Именно этот случай имеет первостепенное значение для комплексометрии: методики, не требующие разделения определяемых металлов, как правило, менее трудоемки и дают более точные результаты [5]. Ранее мы использовали системы уравнений материального баланса для моделирования титрования одного металла произвольным лигандом в присутствии маскирующего вещества [6]. Данный подход позволяет обходиться без грубых упрощений (условных констант) и правильно моделировать кривые титрования, имеющие несколько скачков [7]. Целью настоящей работы было создание на этой же основе модели для комплексометрического анализа смесей металлов, в том числе в условиях маскирования.

В ходе данной работы необходимо было: построить модель, приближенную к реальным условиям комплексометрического анализа; разработать алгоритм расчетов; составить реализующую его программу для IBM-совместимых компьютеров и подтвердить правильность ее работы сопоставлением результатов расчета с литературными данными, относящимися к комплексонометрии.

По нашему мнению, необходимым и достаточным приближением можно считать следующую модель. Пусть при температуре 250С в водном растворе с нулевой ионной силой и произвольным значением рН присутствуют ионы нескольких (не более трех) металлов М1, М2, М3 и может присутствовать маскирующее вещество R, дающее с имеющимися металлами равновесную смесь комплексов. В ходе титрования раствор лиганда Y вводится отдельными небольшими порциями, причем после каждого прибавления достигается химическое равновесие. М1, М2 и М3 подвержены ступенчатому гидролизу, а R и Y ступенчато протонируются. Максимально возможное координационное число металлов - 6; дентатность лигандов может быть любой, основность их - не более 4. Наличие прочих компонентов раствора в модели не учитывается, т.е. требуется химическая инертность примесей. В системе не образуются смешанные, протонированные и полиядерные комплексы, не протекают окислительно-восстановительные реакции, не выпадают осадки. Начальные общие концентрации компонентов, рН раствора и константы равновесий известны. рН раствора и его температура в ходе титрования остаются постоянными. Описание: http://inkat.ru/images/books/606/referat/79137-0.jpg

В наиболее сложном случае (присутствуют 3 металла и 1 маскирующее вещество) условие материального баланса приводит к системе из пяти уравнений, а именно:

где СМ1, СМ2, СМ3, СY, СR - текущие общие концентрации M1, M2, M3, Y, R соответственно.

После подстановки констант и алгебраических преобразований получается пригодная для численного решения система из пяти нелинейных уравнений с пятью неизвестными, которыми являются равновесные концентрации [M1], [M2], [M3], [Y] и [R]. Аналогичная система для более простого случая приведена нами в [6].

Программная реализация модели. Решение системы уравнений осуществляется по квазиньютоновской схеме, предполагающей возможность дробления ньютоновского шага с целью недопущения выхода за пределы области локальной сходимости итерационного алгоритма [8]. Это позволяет обеспечить глобальную сходимость на множестве допустимых входных параметров и приемлемую скорость вычислений на современных ЭВМ. DVK Complexometry (ОмГУ, 1999) написана на языке Object Pascal и предназначена для работы в операционных системах Windows 95/98/NT. Пользовательский интерфейс организован в соответствии с основными принципами GUI. Кроме главного исполняемого файла дистрибутив содержит инсталлятор, деинсталлятор, справочный файл в формате MicroSoft Help Workshop, а также отдельные базы данных по протонированию, гидролизу и комплексообразованию, содержание которых в основном соответствует справочнику [9]. Время расчета самых сложных кривых титрования на машинах с процессором Pentium 200 не более 1 минуты.

Страницы: 1 2 3

Смотрите также

Микроэмульсионный метод получения оксида цинка
...

Физики сымитируют большой взрыв в пробирке
Физики создали "вселенную в пробирке", которую можно использовать для проверки универсальных теорий природы Вселенной. Была взята пробирка размером с мизинец, которую охладили до температу ...

Модификация вторичных полимеров для изготовления изделий различного функционального назначения
...