Конструкционные порошковые материалы на основе железа
Материалы / Химические методы получения порошкообразных материалов и извлечения железа / Конструкционные порошковые материалы на основе железа
Страница 2

Для получения практически беспористых изделий с повышенными механическими свойствами применяют горячее изостатическое прессование- экструзию, динамическое горячее прессование.

В связи с низкой прочностью и твердостью спеченного железа, для повышения его механических свойств в железный порошок при приготовлении порошковой смеси вводят легирующие добавки (фосфор, медь, хром, никель, молибден), а спеченные изделия подвергают химико-термической обработке: азотированию, сульфидированию, хромированию.

Медь в железные изделия вводят непосредственно в виде порошка или при изготовлении порошковой смеси в виде лигатуры. Введение меди в количестве 1,0–10 масс. % увеличивает предел текучести и временное сопротивление материала, но несколько снижает его пластичность и вязкость. Введение меди существенно повышает сопротивляемость порошкового материала атмосферной коррозии. Максимальная прочность на разрыв достигается при массовой доле меди 5–7 %. Медь снижает усадку материала при спекании. При введении 2–3 % меди спекание происходит практически без изменения размеров изделия, что позволяет избежать или существенно снизить объем его последующей механической обработки. Увеличение массовой доли меди свыше 3 % сопровождается ростом изделий при спекании, рост достигается при введении 8 % меди.

Широкое применение нашли железоникелевые и железоникельмедные сплавы. Присадка к чистому железу 5 % никеля повышает прочность и твердость материала, оставляя его пластичность практически без изменений. При одновременном легировании никелем и медью (Ni — 4 % и Си — 2 %) прочность на разрыв образцов с пористостью 10 % достигает 400–420 МПа, удлинение —7–8 %, твердость — 120–127 НВ. Такие же образцы, легированные только 2 % меди, показывают следующие свойства при 10 % пористости: прочность на разрыв — 280–300 МПа, удлинение — 3–4 %, твердость — 100 НВ. Наиболее благоприятное сочетание прочности и пластичности наблюдается в сплавах содержащих от 1 до 5 % каждого из этих элементов.

В связи со сравнительно низкой прочностью и твердостью спеченных железных изделий, основная масса порошковых материалов на базе железа дополнительно легируется углеродом, под действием которого спеченное железо приобретает способность закаливаться и во много раз повышать свою твердость и прочность.

Углеродистые порошковые стали и стальные изделия могут быть получены непосредственным введением в железный порошок углерода в виде графита, сажи или чугунного порошка, а также путем науглероживания изделий в процессе спекания или цементации после спекания. Наиболее распространен метод введения в порошковую смесь графита. Однако из-за неравномерного распределения графита по объему смеси при смешивании стальные изделия в спеченном состоянии отличаются непостоянством свойств и структурных составляющих. Наиболее насыщенные углеродом микрообъемы аустенита располагаются вблизи графитовых включений, что способствует появлению в структуре спеченной стали свободного избыточного цементита и феррита в соотношениях, не соответствующих диаграмме состояния железо—углерод.

При спекании железографитовых изделий графит частично выгорает. Для уменьшения выгорания применяют графитосодержащие засыпки, углеродсодержашие среды. Кроме этого при приготовлении порошковой смеси в ее состав дополнительно вводят избыточное количество графита. Так, для получения стальных порошковых изделий с 0,4–0,45 % углерода при спекании в атмосфере конвертированного природного газа в смесь необходимо вводить до 0,85 % графита. При применении эндогаза с точно регулированным потенциалом по углероду содержание графита в смеси должно превышать заданное на 0,3–035 %. В связи с этим при приготовлении стальных изделий в порошковую смесь взамен графита зачастую вводят сажистое железо и порошок из чугунной стружки. Более высокая плотность сажистого железа и порошка чугунной стружки по сравнению с графитом позволяет получать более однородную смесь, что обеспечивает стабильность структуры и свойств изделия.

Страницы: 1 2 3

Смотрите также

Стекло
...

Влияние адсорбционного взаимодействия на молекулярную подвижность полимерных цепей в граничных слоях
Адсорбционное взаимодействие полимерных молекул с поверхностью, которое имеет место в наполненных системах, можно рассматривать как процесс, приводящий к перераспределению межмолекулярных связей в с ...

Ксенон (Xenonum), Xe
Ксенон - химический элемент VIII группы периодической системы Д. И. Менделеева, относится к инертным газам; ат. н. 54, ат. м. 131,30. На Земле К. присутствует главным образом в атмосфере. Атмосферный ...