Синтез оксидного слоя заданной толщиныМатериалы / Химическая сборка поверхности твердых тел путем молекулярного наслаивания / Синтез оксидного слоя заданной толщины
При нанесении слоя заданной толщины нужно строго соблюдать принципы, о которых упоминалось выше, а также учитывать свойства поверхности с вновь привитыми ФГ при выборе режимов и реагентов для нанесения второго и последующих монослоев. Необходимо составить программу синтеза в зависимости от состава и структуры целевого продукта, которая должна включать технологические режимы (температура, концентрация реагентов, время), набор реагентов и последовательность обработки ими.
Рассмотрим возможную программу и пути ее реализации при синтезе методом МН оксидного слоя заданной толщины. С учетом состава привитых ФГ (см. реакции (2)-(5)) и их химических свойств возможны несколько путей вторичных превращений на поверхности. При составе групп (ЇSi-O-)2SiCl2 , (ЇSi-O-)2TiCl2 требуется подобрать такой реагент, который, во-первых, был бы способен заместить хлор-ионы в них и создать новые активные центры, а во-вторых, доставить на место хлора кислород, так как стоит задача получить на поверхности оксидный слой. Вполне логичным представляется использовать на стадии замещения хлор-ионов в качестве реагента пары воды (донора кислорода) и активного хлорзамещающего реагента. При обработке парами воды на поверхности протекают реакции по схемам
Как и при синтезе элементоксохлоридного монослоя, процесс проводят до полного замещения Cl на ОН с последующим удалением избытка физически сорбированной воды и хлороводорода - газообразного продукта реакций (6, 7), то есть вновь получаем гидроксилированную поверхность, но ОН-группы уже связаны не с атомами исходной матрицы, а с атомами в составе привитых ФГ. Гидроксилированную поверхность вновь обрабатывают парами соответствующего хлорида, и образуется второй элементоксохлоридный монослой, например, по схеме
Затем вновь продукт реакции (8) может быть подвергнут обработке парами воды и т.д. (Реакции (3), (6)-(8) впервые были изучены С.И. Кольцовым.)
Таким образом, многократно и попеременно обрабатывая силикагель парами четыреххлористого титана и воды с соблюдением принципов МН удается сформировать на поверхности титаноксидный слой, толщина которого определяется числом циклов МН (один цикл в данном примере включает реакции (3), (7)). Но как поступить в случае, когда атомов хлора нет в составе привитых ФГ (см. схемы (4), (5))? Один путь - создать хлорсодержащие группы, осуществляя реакции с частично дегидроксилированной поверхностью, например, по схеме
А далее по изложенной выше программе, используя в качестве второго реагента пары Н2О.
Но возможен и другой путь, связанный с окислительно-восстановительными свойствами трехвалентного фосфора и шестивалентного хрома в составе привитого монослоя. Так, А.Н. Волкова и С.И. Кольцов синтезировали оксидный слой пятивалентного фосфора на силикагеле по следующим реакциям:
и затем вновь обрабатывали продукт (11) парами РСl3 . Многократно чередуя реакции (4), (10), (11) можно сформировать на поверхности фосфоркислородный слой заданной толщины.
Используя окислительные свойства хрома в составе групп (ЇSi-O-)2CrO2 , для получения на поверхности гидроксильных групп, способных вступать в дальнейшем в реакции с оксохлоридом хрома (6), продукт реакции (5) обрабатывали восстановителем - молекулярным водородом. При этом на поверхности при 200?C протекала реакция по схеме с образованием трехвалентного хрома в составе ФГ.
Присоединение второго монослоя осуществляли по реакции продукта Iб с оксохлоридом хрома
Восстановление шестивалентного хрома в полученном продукте IIа водородом по схеме приводит к увеличению концентрации гидроксилов на поверхности, что вызывает конденсацию их у соседних атомов хрома по реакции (продукт IIб)
В дальнейшем процесс МН осуществляют путем многократного чередования реакций, аналогичных (13)-(15). На рис. 2 представлена предполагаемая схема продукта (VIб) после шести циклов МН. При этом наблюдается прямолинейная зависимость уменьшения удельной поверхности образцов с увеличением как концентрации хрома в образцах, так и числа циклов МН (рис. 3). Предложенные схемы реакций (5), (12)-(15) хорошо согласуются с геометрическими соотношениями в образующихся продуктах, связанными с изменением межатомных расстояний на поверхности в процессе МН.
Смотрите также
Ксенон (Xenonum), Xe
Ксенон - химический элемент VIII группы периодической системы Д. И. Менделеева, относится к инертным газам; ат. н. 54, ат. м. 131,30. На Земле К. присутствует главным образом в атмосфере. Атмосферный ...
Углеводы
Углеводы на ряду с белками и липидами
являются важнейшими химическими соединениями живых организмов. В организме
углеводы выполняют важнейшие функции: энергетическую, структурную, защитн ...