Линейные отображения, операторы и матрицы
Материалы / Теория симметрии молекул / Линейные отображения, операторы и матрицы

Определение 1. Отображение f: V®W векторного пространства V в векторное пространство W над полем Р называется линейное отображение, если для всех v, v1, v2ÎV, aÎP выполняются условия:

1) f(v1+v2)=f(v1)+f(v2);

2) f(av)=af(v).

Если V=W, то линейное отображение называется линейным оператором или линейным преобразованием пространства V.

Пусть e1, e2, …, en – базис пространства V, а e1¢, e2¢, …, en¢ - базис пространства W. Образы базисных векторов пространства V в базисе пространства W можно записать в виде

(i=1, 2, …, m) (1)

Коэффициенты в выражении (1) запишем в виде матрицы, которая называется матрицей линейного отображения f.

.

В случае линейных операторов, т. е. линейных отображений векторного пространства в себя, операторы удобно обозначать , а матрицу оператора в фиксированном базисе – в виде А.

Смотрите также

Углерод и его свойства
Углерод (лат. Carboneum), С - химический элемент IV группы периодической системы Менделеева. Известны два стабильных изотопа 12С (98,892 %) и 13С (1,108 %).  Углерод известен с глубокой ...

Степень превращения
Степень превращения – количество прореагировавшего реагента, отнесенное к его исходному количеству. Для простейшей реакции   ,[1] где  - концентрация на входе в реактор или в начале ...

Моделирование газофазных процессов, протекающих при гетерогенно-каталитическом восстановлении оксидов азота
...