Совершенствование технологии ПАН жгутика с целью получения
высокопрочных, высокомодульных углеродных волоконМатериалы / Совершенствование технологии получения технического ПАН жгутика / Совершенствование технологии ПАН жгутика с целью получения
высокопрочных, высокомодульных углеродных волоконСтраница 2
При снижении концентрации осадителя на струях появляются утолщения. В этом случае формование следует проводить при такой концентрации осадителя, при которой расширение реализуется полностью, чтобы избежать деформации и обрыва поверхностных слоев луковицы, т.е. появления эффекта деформационного резонанса.
При оптимально выбранных условиях формования коэффициент вариации по линейной плотности филаментов снижается до 4-5%. Последний вариант, при котором концентрация осадителя снижается до прекращения деформации луковицы, наиболее приемлем, так как одновременно достигается высокая прочность и низкая пористость волокна.
Для повышения прочности и модуля упругости УВ необходимо уменьшение размеров структурных единиц в исходных ПАН волокнах - фибрилл, кристаллитов.
Уменьшение размеров фибрилл в ПАН волокне и более равномерная структура по поперечному сечению волокон достигается при формовании на «мягких» ваннах с низким содержанием осадителя, благодаря чему в зоне осаждения устанавливается низкий градиент концентраций растворителя и осадителя и образующийся полимерный каркас имеет равномерную мелкофибриллярную структуру [16].
В процессе осаждения продиффундировавший в волокно осадитель вызывает десольватацию растворителя, снижает растворимость полимера сначала до равновесного, а по мере повышения концентрации до пересыщенного или метастабильного состояния. Именно в области метастабильного пересыщенного состояния происходят процессы структурообразования, т.е. образование зародышей полимерной твердой фазы и их рост. Скорость образования зародышей (скорость нуклеации) экстремально зависит от степени пересыщения. По мере увеличения концентрации осадителя скорость нуклеации возрастает, достигая максимума, что приводит к образованию мелкофибриллярной структуры. При дальнейшем увеличении концентрации осадителя одновременно ускоряется рост новой полимерной фазы вокруг уже образовавшихся зародышей. Новые зародыши поглощаются растущей твердой фазой, происходит процесс коалесцен-ции, скорость нуклеации снижается, и рост мелкофибриллярных структур замедляется.
В зависимости от степени пересыщения при мокром формовании ПАН волокон можно выделить два типа коагуляции: фронтальная и объемная (рис.13). При формовании в жесткие ванны на поверхности формующейся нити образуется граничная зона значительного пересыщения, где мгновенно по спинодальному механизму возникают зародыши структурообразования и начинается рост фибриллярных структур. Фибриллы, растущие из соседних центров, сталкиваются и взаимно подавляют свой рост во всех направлениях, кроме перпендикулярного к поверхности соприкосновения прядильного раствора с осадительной ванной, где градиент концентрации осадителя и соответственно степени пересыщения наибольший. Образуется граничная линия - фронт коагуляции, - которая по мере диффузии осадителя перемещается к оси волокна. Это фронтальная коагуляция. Она приводит к образованию радиальных стержневидных структур.
Рис. 13. Схема фронтального (а) и объемного (б) осаждения: 1 - осадительная ванна; 2 - прядильный раствор; 3 - центры (зародыши) структурообразования; 4 - фибриллярные структуры; d - мембрана (кутикула)
При применении чрезмерно жестких ванн, вызывающих быструю и глубокую десольватацию полимера, сразу после образования мембраны выделяются достаточно крупные капли низкомолекулярной фазы (смесь осадителя и растворителя). Капли быстро растут. Они не могут проникнуть через плотную мембрану и в виде тонких струй конвективно распространяются в радиальном направлении к оси волокна. Так, при формовании в жесткую ванну образуются радиальные каналы, вызывающие повышенную пористость и отрицательно влияющие на свойства готовых волокон.
Области протекания коагуляции по тому или другому механизму иллюстрируются на рис.14, где схематично дается продольное сечение волокна, формующегося в осадительные ванны разной коагулирующей способности: жесткие, мягкие и сверхмягкие.
Рис.14. Схема формования волокна в жесткие (а), мягкие (б) и сверхмягкие (в) ванны: r - расстояние от оси волокна по радиусу; l - расстояние от плоскости фильеры; l1 - длина жидкого участка; 1 - бинодаль (кривая равновесного состояния); 2 - спинодаль (кривая критического пересыщения); 3 - прядильный раствор; 4 - гелеобразное состояние; 5 - область метастабильного состояния
Осаждение в жестких ваннах показано на рис.14, а. В данном случае концентрация осадителя в ванне в соответствии с упоминавшимся критерием жесткости ванны должна быть выше двух критических, т.е. Со > 2Ск. Например, при температуре 19,5°С это соответствует 2×10,5 =21% осадителя и 79% растворителя. Абсцисса соответствует оси формующегося волокна, т.е. времени или расстоянию l от поверхности фильеры. Ордината выражает расстояние r от оси волокна по радиусу. Осадитель диффундирует с поверхности волокна к его оси. Равновесная концентрация осадителя, в рассматриваемом примере она равна C ~ 7%, выражена кривой 1. Это бинодаль. Ниже этой кривой - прядильный раствор. Кривая 2 (спинодаль) соответствует критической концентрации Cк = 10.5%. Между кривыми 1 и 2 расположена метастабильная область 5. Кривая 2 соответствует спинодальному распаду прядильного раствора на низкомолекулярную жидкую и полимерную твердую фазу. Цифрой 4 обозначена твердая полимерная фаза - гель. При осаждении четко видна граничная линия между прядильным раствором и скоагулировавшим волокном. Осаждение по объемному механизму из-за быстрого протекания процесса здесь практически не реализуется.
Смотрите также
Межпредметные связи в курсе школьного предмета химии на
примере углерода и его соединений
Что же представляют из себя
межпредметные связи?
Межпредметные связи – это современный принцип обучения в средней
школе. Он обеспечивает взаимосвязь предметов естественнонаучного и
естественно-г ...
Моделирование процессов разряда-ионизации серебра на поверхности твердого электрода
...
Углерод (Carboneum), С
Углерод - химический элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Известны два стабильных изотопа: 12C (98,892%) и 13C (1,108%). Из радиоактивных изотопов ...