Методика и результаты исследованияМатериалы / Скорость химической реакции / Методика и результаты исследованияСтраница 1
1. Зависимость скорости реакции от природы взаимодействующих веществ
Цель: проверить влияние природы реагирующих веществ на скорость химической реакции.
А. Оборудование: 0,5 М раствор тиосульфата натрия (79 г./л), 0,5 М раствор серной кислоты, 1 М раствор соляной кислоты, 0,5 М раствор ортофосфорной кислоты, дистиллированная вода, пробирки, черная бумага, часы с секундной стрелкой.
Берем тиосульфат натрия и три кислоты (серную, соляную и ортофосфорную):
Na2S2O3 + H2SO4 = Na2SO4 + SO2 + S + H2O
Na2S2O3 + 2 HCl = 2 NaCl + SO2 + S + H2O
3 Na2S2O3 +2 H3РO4 = 2 Na3РO4 + 3 SO2 + 3 S + 3 H2O
Наливаем в три пробирки по 8 мл раствора тиосульфата натрия. В первую пробирку с раствором тиосульфата натрия наливаем 8 мл серной кислоты, быстро перемешиваем и засекаем время в секундах от начала реакции до помутнения раствора. Чтобы лучшее заметить окончание реакции, с противоположной стороны стенки пробирки приклеиваем полоску черной бумаги. Отчет времени заканчиваем в момент, когда эта полоска не будет просматриваться сквозь помутневший раствор.
Аналогично проводим опыты с другими кислотами. Результаты заносим в таблицу (приложение 1, таблица 1). Скорость реакции определяем как величину, обратно пропорциональную времени: υ = 1/ t. На основании таблицы строим график зависимости скорости реакции от природы реагирующих веществ (приложение 2, график 1).
Вывод: таким образом, природа кислот оказывает влияние на скорость химической реакции. А, так как сила кислот определяется концентрацией ионов водорода, то скорость реакции зависит и от концентрации реагирующих веществ.
Б. Рассмотрим реакцию взаимодействия различных металллов с соляной кислотой. Скорость реакции будем определять по объему выделившегося водорода, который собираем методом вытеснения воды (приложение 3, рисунок 1).
В четыре пробирки поместим по 0, 05 г. металлов: магния, цинка, железа и меди. Поочередно в каждую пробирку (а) наливаем одинаковые объемы соляной кислоты (1:2). Водород, который будет быстро веделяться, поступит в пробирку (б). Отмечаем время, за которое пробирка заполняется водородом. На основании результатов (приложение 4, таблица 2) строим график зависимости от природы реагирующих веществ (приложение 4, график 2).
Вывод: не все металлы могут взаимодействовать с кислотами путем выведения водорода. Металлы, вытесняющие водород из растворов кислот, расположены в ряду Н.Н. Бекетова до водорода, а металлы, которые водород не вытесняют – после водорода (в нашем случае это медь). Но и первая группа металлов различаются по степени активности: магний-цинк-железо, поэтому и интенсивность выделения водорода различна.
Таким образом, скорость химической реакции зависит от природы реагирующих веществ.
2. Зависимость скорости химической реакции от концентрации взаимодействующих веществ.
Цель. Установить графическую зависимость влияния концентрации на скорость реакции.
Для проведения опыта используем те же растворы тиосульфата натрия и серной кислоты, которыми пользовались в первом опыте (А).
В пронумерованные пробирки наливаем указанные количества миллилитров раствора тиосульфата натрия и воды. Вливаем в первую пробирку 8 мл раствора серной кислоты, быстро перемешиваем и замечаем время от начала реакции до помутнения раствора (смотри опыт 1 А). Проводим аналогичные опыты с остальными пробирками. Результаты заносим в таблицу (приложение 6, таблица 3), на основании которых строим график зависимости скорости химической реакции от концентрации реагирующих веществ (приложение 7, график 3). Аналогичный результат мы получили, оставляя постоянной концентрацию тиосульфата натрия, но меняя концентрацию серной кислоты.
Вывод: таким образом, скорость химической реакции зависимт от концентрации реакнгирующих веществ: чем выше концентрация, тем скорость реакции больше.
3. Зависимость скорости химической реакции от температуры.
Цель: проверить, зависит ли скорость химической реакции от температуры.
Опыт проводим с растворами тиосульфата натрия и серной кислоты (смотри опыт 1)[1], дополнительно готовим химический стакан, термометр.
В четыре пробирки наливаем 8 мл раствора тиосульфата натрия, в 4 другие – 8 мл раствора серной кислоты. Все пробирки помещаем в стакан с водой и измеряем температуру воды. Через 5 минут вынимаем две пробирки с растворами тиосульфата натрия и серной кислоты, сливаем их, перемешиваем и замечаем время до помутнения раствора. Стакан с водой и пробирками нагреваем на 10оС и повторяем опыт со следующими двумя пробирками. Проводим такие же опыты с остальными пробирками, повышая каждый раз температуру воды на 10оС. Полученные результаты записываем в таблицу (приложение 8, таблица 4) и строим график зависимости скорости реакции от температуры (приложение 9, график 4).
Смотрите также
Создание безотходной технологии в производстве кальцинированной соды
В настоящее
время трудно себе представить какую-нибудь отрасль какой-либо страны, где бы не
применялась сода или продукты из неё. Крупнейшими потребителями соды являются
такие отрасли, как ...
Иод (Iodum), I
Иод - химический элемент VII группы периодической системы Менделеева, относится к галогенам (в литературе встречается также символ J); атомный номер 53, атомная масса 126,9045; кристаллы черно-серого ...
Кальций (Calcium), Ca
Вода является колыбелью жизни! Во мраке веков затерялось то время, когда в теплых волнах первобытных морей возникла жизнь в виде микроскопических образований. Сложнейшее сочетание разнообразных причин ...