Некоторые аспекты поиска, создания и изучения объектов ионики твердого тела на примере работ, выполненных в Институте кристаллографии РАН
Материалы / Исследование твердых электролитов / Некоторые аспекты поиска, создания и изучения объектов ионики твердого тела на примере работ, выполненных в Институте кристаллографии РАН
Страница 3

Подвижными в кристаллах могут быть не только катионы, но и анионы, например фтора в нестехиометрических фазах М1–xRxF2+x со структурой флюорита (М=Ва, Sr, Ca; R=La-Lu,Y). Здесь надо отметить, что электропроводность чистых и слаболегированных дифторидов MF2 со структурой флюорита не очень велика и не превышает 10–6-10–5 Ом–1·см–1 при 500-600 К. Твердые растворы на основе МF2 с большой концентрацией примеси, являясь однофазными, имеют переменный состав и повышенную концентрацию анионов фтора. Ионный перенос трактуется в рамках предложенной нами модели дефектных областей, характеристики которых зависят как от типа катиона матрицы, так и от сорта ионов R3+, изоморфно замещающих ионы М2+ в матрице. В ядре дефектной области располагаются редкоземельные ионы и "замороженные" комплексообразованием атомы фтора в виде кластеров различного типа, а в периферийной части, т.е. прилегающей к ядру искаженной флюоритовой матрице, могут находиться слабо связанные, а потому подвижные анионы фтора, которые и переносят ток. Поэтому характеристики ионного переноса в сильнонестехиометрических фазах определяются главным образом атомным строением дефектных областей, так как подвижность междоузельных анионов F– зависит от типа катиона матрицы (Ca2+, Sr2+, Ba2+) и сорта редкоземельных ионов R3+. Совместный анализ электрофизических и структурных характеристик нестехиометрических фаз позволил предложить конкретный механизм ионного переноса, связанный со строением ядер дефектных областей.

Монокристаллы твердых электролитов хороши и необходимы как объекты для выяснения фундаментальных аспектов быстрого ионного переноса в твердых телах. Так выбираются оптимальные материалы, которые находят практическое применение уже в виде поликристаллов (керамика, порошки, покрытия).

Поликристаллические образцы обычно изготавливают классическим методом твердофазных реакций, который обладает рядом существенных недостатков: сложно получить полностью однофазные продукты из-за плохой гомогенизации исходных реагентов, нужна высокая температура отжига, синтез длителен и трудоемок. К одним из лучших литийпроводящих материалов относятся соединения семейства сложных литиевых фосфатов Li3M2(PO4)3, характеризующиеся (для монокристаллов и стандартной керамики) рабочими температурами выше 300°С. Чтобы понизить эти температуры, мы попытались приготовить сложные фосфаты в наноструктурном виде. Нанопорошки Li3M2(PO4)3 были синтезированы путем пиролиза ультрадисперсных растворов (рис.9), в котором гомогенизация исходных реагентов осуществляется на молекулярном (нано-)уровне, что значительно облегчает получение полностью однофазных материалов.

Рис.9. Схема получения кристаллического материала при ультразвуковом диспергировании и термической обработке растворов.

Суть метода заключается в следующем: в раствор, содержащий исходные реагенты, помещается мембрана, колеблющаяся с ультразвуковой частотой (рис.10). Над поверхностью раствора образуется "туман", состоящий из ультрадисперсных капель размером от сотен нанометров до микрометров. При быстром нагреве "тумана" происходит испарение растворителя, а затем химическое взаимодействие между реагентами. Этим методом были изготовлены сплошные гладкие пленки твердых растворов Li3FexSc2–x(PO4)3 толщиной 3-5 мкм. Снимки поверхности образцов, сделанные методом атомно-силовой микроскопии (рис.11), показывают столбчатую структуру пленок с диаметром зерен от 1 до 5 мкм. Каждое зерно состоит из множества кристаллитов размером 10-20 нм для х=2 и 50-100 нм для пленки состава х=0.5. Значения объемной ионной проводимости плотных керамических образцов Li3Fe2(PO4)3 из нанокристаллитов и нанокристаллических пленок близки и составляют 2·10–6 Ом–1·см–1 при комнатной температуре. Измеренные величины электропроводности более чем на порядок выше по сравнению с таковыми монокристаллов (рис.12).

Страницы: 1 2 3 4

Смотрите также

Теория электролитической диссоциации
...

Эксклюзионная хроматография
...

Марганец (Manganum), Mn
Марганец — 14-й элемент по распространённости на Земле, а после железа — второй тяжёлый металл, содержащийся в земной коре (0,03 % от общего числа атомов земной коры). Сопутствует железу в ...