Обзор и анализ литературных источников
Материалы / Использование энергосберегающих технологий для кристаллизации сульфата натрия / Обзор и анализ литературных источников
Страница 3

Поток избытка Е пара высоких параметров и другие материальные потоки этой схемы ТН можно найти на базе материальных (МБ) и тепловых (ТБ) балансов для различных узлов и аппаратов на рисунке 4.1г. Приведём основные вехи технологического расчёта, полагая как и ранее с, Сп = const.

ТБ для контура I, необходимый для определения расхода греющего пара D, совпадает с записанным выше; поэтому D рассчитывается по (1).

МБ для контура II позволяет определить поток насыщенного пара высокого давления D" из сепаратора 5:

В расчётные уравнения входит температура перегретого пара Тп после компрессора. Определим её с учётом адиабатического КПД ηад последнего, используя диаграмму состояния рабочего тела h-s. Найдя по диаграмме (известны состояние пара перед сжатием и давления р,Р) удельную адиабатическую работу сжатия Lад= h* - i, рассчитываем реальную работу сжатия: L =Lад/η ад=h’’ –i. Откладывая в диаграмме (на кривой Р) энтальпию h " фиксируем точку состояния рабочего тела после сжатия и его параметры, включая Тп (подробнее см. [14]). Например для водяного пара при t=100 °C,p = 0.1 МПа, Р = 0,25МПа и ηад = 0,7 имеем: Тп = 230 °С. Перегрев при политропном сжатии Тп- Т = 97 °С; это значит, что реальная теплота перегрева пара Cп (Tn-T) = 190 кДж/кг составляет заметную долю от теплоты парообразования греющего пара г** = 2370 кДж/кг. Эти цифры говорят о вполне значимой добавке пара при использовании и учёте теплоты его перегрева.

Перед сравнением различных вариантов ТН несколько соображений о подходе к оценке их эффективности.

Одним из типичных примеров использования принципа теплового насоса являются машины умеренного охлаждения. Для их оценки и сопоставления введено [15,16,17]

понятие о холодильном коэффициенте εх, выражающим количество холода, производимого в испарителе, приходящееся на единицу затраченной адиабатической работы:

Таблица 4.1

Для тепловых насосов, предназначенных для повышения потенциала пара с целью последующей передачи теплоты q при температуре Тв верхнего источника более целесообразен коэффициент эффективности тепловых насосов (ε), называемый также коэффициентом преобразования. [5]:

Коэффициент эффективности ТН ε, как и холодильный коэффициент ε, в определённом смысле характеризует термодинамическое совершенство реализуемого теплового насоса: чем выше ε, тем выгоднее данный вариант теплового насоса. Разумеется, сравнение вариантов ТН следует проводить при одинаковых уровнях и перепадах температур,

поскольку ε, как и ε х в значительной степени зависит не только от перепада температур, но и от их уровня.

На рисунке 4.4 приведено сравнение коэффициентов эффективности полного ТН (теоретического и реального) в области температур от 100

до 150 °С. В качестве нижнего температурного уровня tн выбрана температура 100 °С, соответствующая водяному пару, получаемому из воды при атмосферном давлении. Теоретический (для идеального ТН) коэффициент эффективности ТН рассчитывали по формуле, аналогичной для εх в случае идеальной холодильной машины:

Страницы: 1 2 3 4 5

Смотрите также

Лантаноиды
Лантаноиды (от лантан и греч. еidos - образ, вид), лантаниды, семейство из 14 химических элементов с атомным номером от 58 до 71, расположенных в 6-м периоде системы Менделеева вслед за лантаном (табл ...

Удивительные свойства воды
...

Кюрий (Curium), Cm
Назван в честь Пьера и Марии Кюри. Кюрий-242 в виде окиси (плотность около 11,75 и период полураспада 162 дня) применяется для производства компактных и чрезвычайно мощных радиоизотопных источников эн ...