Строение и свойства кластеровМатериалы / Изучение кластеров и их свойств в области химии / Строение и свойства кластеровСтраница 2
Структура (в смысле возможного расположения частиц безотносительно к способу стабилизации) может быть троякого рода: цепочечной, т. е. линейной, или, точнее, одномерной (цепочка частиц может быть изогнутой, зигзагообразной и т. д.), сетчатой, или двумерной, и наконец, трехмерной, когда частицы, формирующие кластер, образуют сферу или многогранник.
Кластерами с цепочечной структурой являются, например, частицы - Sg (g<8) и Cg (g<6)- в парах серы и углерода. Стабилизированные же цепочки в составе молекул и особенно кристаллов кластерных соединений широко известны и интенсивно изучаются.
Нагляднейший пример двухмерных кластеров - зародыши адсорбированных фаз на поверхности твердых тел. Стабилизированные двухмерные кластеры часто составляют также элемент структуры слоистых нестехиометрических соединений. С некоторыми из них мы еще встретимся, но преимущественно будем рассматривать данные о трехмерных структурах свободных кластеров.
Длительное время структуру простейших кластеров, в особенности металлических (при рассмотрении высокодисперсных нанесенных катализаторов), принимали такой же, как у
теоретическому изучению структуры кластеров явились поразительные результаты наблюдений геометрических (кристаллографических) форм малых кристаллов, образующихся при конденсации паров и даже при химическом осаждении из газовой фазы: часто эти кристаллиты имели пента-тональную симметрию, несовместимую с возможностью построения бесконечной решетки.
Разрешение этого парадокса содержится в работах главным образом Хоара и Пэйла, а также Бертона; найден ответ на оба вопроса: почему зародыши кристалла имеют тенденцию к пентагональной симметрии и как происходит переход от такого зародыша к одному из видов трансляционной симметрии бесконечной решетки.
И расчет, и простые эксперименты на шаровых моделях показывают, что при ограниченном числе сфер плотнейшей оказывается не гранецентрированная кубическая упаковка и не гексагональная, а упаковка с пентагональной симметрией.соответствующих по типу решетки макрокристаллов. Типичные микрокристаллы в этом приближении имеют вид правильных многогранников с кубической или гексагональной структурой. Эта идеализация, как стало ясно в начале 70-х годов, плохо отражает действительность. Уже грубые чисто термодинамические оценки указывают на вероятность «аморфизации» частиц твердого тела с уменьшением его размера. Симметрия сохраняется и для более крупных кластеров с наиболее плотной возможной упаковкой. При 55 атомах треугольные гран» кластера образованы шестью атомами каждая и,отвечают Граням; (Ш) нормальной гране-центрированной упаковки. Любая из этих граней может поэтому служить основой для дальнейшего роста обычного кубического кристалла с периодической структурой. А с другой стороны, такие 55гатомные кластеры естественно рассматривать и как зародыш мельчайших пятиугольных кристалликов, наблюдаемых экспериментально: если кластер растет во всех направлениях (а не в одном), получающийся кристаллик остается пентагональным.
Таким образом, поверхность чрезвычайно малых микрокристаллов должна быть образована исключительно гранями. Квадратная упаковка на поверхности таких микрокристаллов отсутствует; она появляется только с началом роста нормальных кубических кристалликов.
Теоретический анализ показывает, что частицы металлов с нормальной гранецентрированной структурой становятся более устойчивыми, чем икосаэдроические (пентагональные) частицы при диаметре.
Смотрите также
Сравнительный анализ: методы получения синтез-газа
...
Качественное определение урана и тория в твердых материалах
Цель работы
1.Освоить
методику качественного определения урана и тория в рудах, концентратах
2.Определить,
присутствует или нет уран и торий в пробах руды
...
Введение
Развитие современного
машиностроения невозможно без решения многих проблем в области полимерного
материаловедения, играющих роль в обеспечении надежности и долговечности машин
и механизмов, приборо ...