Изотермы адсорбции
Материалы / Изучение возможности применения магнитных жидкостей для синтеза магнитных сорбентов / Изотермы адсорбции
Страница 3

Эта классификация (табл.1.) основана на следующем принципе: каждый интервал размеров пор соответствует характерным адсорбционным свойствам, находящим свое выражение и изотермах адсорбции. В микропорах благодаря близости сте­нок пор потенциал взаимодействия с адсорбированными моле­кулами значительно больше, чем в более широких порах, и ве­личина адсорбции при данном относительном давлении соответственно также больше. В мезопорах происходит капиллярная конденсация; на изотермах наблюдается характерная петля гистерезиса. Макропоры настолько широки, что для них невоз­можно детально изучить изотерму адсорбции из-за ее близости к прямой р/р0 = 1.

Капиллярная конденсация обусловлена наличием у адсорбента мезопор. Пары адсорбтива конденсируются в таких порах при давлениях, меньших давления насыщенного пара над плоской поверхностью вследствие образования в капиллярах вогнутых менисков. Возникновение этих менисков следует представлять как результат слияния жидких слоев, образовавшихся на стенках капилляра вследствие адсорбции паров. Понятно, что возникновение вогнутых менисков возможно только в том случае, если образовавшаяся жидкость смачивает стенки капилляра.

Явление конденсации не следует смешивать с физической адсорбцией. Элементарная теория капиллярной конденсации не учитывает специфического действия поверхностных сил. Доказа­тельством различия капиллярной конденсации и полимолекулярной физической адсорбции служит и тот факт, что полимолекулярная адсорбция может происходить на плоских поверхностях, тогда как капиллярная конденсация в таких условиях невозможна.

При адсорбции, сопровождающейся капиллярной конденсацией, часто наблюдается явление гистерезиса, когда изотермы адсорбции и десорбции не совпадают.

Предварительное тщательное удаление воздуха из пористого адсорбента обычно очень сильно уменьшает гистерезис. Это как будто подтверждает правильность объяснения гистерезиса адсорбцией воздуха на стенках капилляров. Есть, однако, и другие объяснения этого сложного явления. В частности, гистерезис при капиллярной конденсации может быть объяснен, исходя из формы пор адсорбента. Представим, что адсорбент содержит поры, изображенные на рис. 4.

Рис. 4. Схема капиллярной конден­сации в порах различной формы: а - конусообразной; б - цилиндрической, за­крытой у одного конца; в - цилиндрической, открытой с обоих концов.

При конусообразной форме в порах (см. рис. 4а) oбразуется адсорбционнная пленка с вогнутой поверхностью, причем шаровидная поверхность с максимальной кривизной наблюдается в наиболее узкой части поры. При p = psexp[-2σVмол/(rRT)] пар будет насыщенным по отношению к этой поверхности и начнет конденсироваться. Это приведет к продвижению жидкости и в более широкую часть поры, что, конечно, вызовет увеличение r. Для того чтобы пар продолжал конденсироваться, давление р должно возрастать (см. изотерму на рис. 4а). При уменьшении р жидкость со стен капилляра десорбируется и изотерма пойдет в обратном направлении таким же путем, т. е. капиллярная конденсация в конусообразных порах полностью обратима.

В порах цилиндрической формы, закрытых с одного конца, т. е. имеющих форму пробирки (см. рис. 46), у закрытого конка при адсорбции обра­зуется шаровидный мениск. При p = psexp[-2σVмол/(rRT)] происходит капиллярная конденсация, и в результате этого поры заполняются жидкостью. Однако в отличие от предыдущего случая радиус мениска при этом будет постоянным, и поэтому заполнение пор происходит при постоянном значении р. чему соответствует вертикальная часть изотермы капиллярной конденсации (см. изотерму на рис. 46). Про­цесс десорбции пойдет в обратном направлении таким же путем, т. е. капиллярная конденсация в цилиндрических капиллярах с одним закры­тым концом также вполне обратима. Наконец, в цилиндрических порах, открытых с обоих концов (см. рис. 4в), шаровидный мениск при ад­сорбции не может образоваться, и кон­денсация начнется на внутреннем ци­линдрическом мениске пленки, покры­вающей стенки капилляра, при дав­лении pц = psexp[-2σVмол/(rRT)]. В результате конденсации толщина пленки жидкости увеличивается, а ра­диус поры уменьшается, и поэтому она заполняет жидкостью при дав­лении р. Изотерма капиллярной кон­денсации, как и в предыдущем слу­чае, имеет вертикальный участок (см. изотерму на рис. 4в). Однако вследствие меньшей кривизны цилиндрической поверхности мениска по сравнению с кривизной шаровой поверхности (при одном и том же радиусе капилляра) вертикальный участок на изотерме соответствует большим зна­чениям давления пара. После заполнения поры на обоих ее концах возникнут шаровидные мениски, кривизна которых с повышением давления пара умень­шается. При десорбции процесс вначале пойдет обратимо — при испарении небольших количеств жидкости в устья капилляров будут вдавливаться шаровидные мениски со все возрастающей кривизной Однако при p = psexp[-σVмол/(rRT)] эти шаровидные мениски прорваться еще не могут и капилляр при этом давлении останется еще заполненным. Только при снижении давления пара до p = psexp[-2σVмол/(rRT)] радиус шаровидного ме­ниска станет равным радиусу адсорбционной пленки в цилиндрическом капил­ляре и вся жидкость, заполнявшая капилляр, испарится. Все это обусловит то, что десорбционная ветвь разойдется с адсорбционной, т. е. получится характер­ная петля капиллярно-конденсационного гистерезиса.

Страницы: 1 2 3 4

Смотрите также

Химический язык
В условиях развития современного общества повышаются требования к качеству обучения школьников, уровню знаний и умений учащихся. При том, резко возрастает нагрузка на весь образовательный пр ...

Моделирование стационарного и нестационарного истечения адиабатно-вскипающей жидкости из коротких каналов
В работе [1] для анализа процесса нестационарного и стационарного истечения вскипающей жидкости в термодинамически неравновесном приближении использован нетрадиционный подход, в основу котор ...

Прогнозирование критического давления. Основные методы прогнозирования
...