Гетеропереход графит (монокристалл)
Статьи / Транспортные процессы и гетеропереходы в твердофазных электрохимических системах / Гетеропереход графит (монокристалл)
Страница 2

W2/T = W’0exp [(0.5Em + 1.5Ef) /kT].

Анализ температурных зависимостей W2 от температуры позволяет определить природу не основных носителей в модели АРДС. Экспериментальные результаты для монокристалла в контакте с серебром в координатах ln(W2/T), 1/Т образуют два линейных участка (рис.10): для температур выше 305.5К -

W2 = (3.09 ± 0.84) 10-4Т*ехр [(0.183 ± 0.007) еУ/кТ] Ом. см2/с,/2, (4) для температур ниже 305.5К

W2 = (1.62 ± 0.11) 10»2Т*ехр [(0.079 ± 0.002) еУ/кТ] Ом. см2/с»2. (5)

В случае поликристаллического образца с Ag-электродами при температурах выше 285К

W2 = (2.33 ±0.44) 10”4T*exp [(0. 190 + 0.005) eV/kT] OM. CM2/c1/2, (6) ниже 285К

W2 = (3.88 ± 0.36) 10»2Т*ехр [(0.063 ± 0.002) еУ/кТ] Ом. см2/с|/2. (7)

Следует отметить, что для ячеек с графитовыми электродами в интервале температур 253 .323К наблюдали лишь одну ветвь линейной зависимости. Для монокристалла она отвечала уравнению (2) с энергией активации 0,068 eV, для поликристаллических образцов - уравнению (3) с энергией активации 0,056 eV, что в обоих случаях близко к низкотемпературным ветвям соответствующих зависимостей при серебряных электродах. Из уравнений (2), (3) и (4) - (7) получаем Ет= 0,11 .0,16 eV и Ef - 0,07 .0,08 eV в зависимости от состояния суперионного проводника и материала электродов. Учитывая численные значения Ет и Ef, а также учитывая соотношение D2 = D02exp [-(Em + Ef) /kT] и зависимость постоянной Варбурга от коэффициента диффузии не основных носителей, вычисляем энергию активации диффузии не основных носителей. Она составляет для диффузии по примесным дефектам 0,11 .0,16 eV и для диффузии по собственным дефектам 0, 19 .0,25 eV.

Неосновными носителями в Ag4RbJ5 могут быть как ионы Г, так и ионы Rb+. Однако энергии активации диффузии ионов J, полученные на монокристаллах 0,98 eV (интервал 444 .501К) и на поликристаллах 0,58 eV (297 .413К, Чеботин) существенно больше 0,25eV; полученной из анализа энергетических характеристик Варбурга. Энергия активации диффузии ионов рубидия 0,40 eV (поликристалл, Schroder, 1980). Поэтому не основными носителями, описываемыми импедансом Варбурга, в модели АРДС можно считать ионы рубидия Rb+. Этот вывод согласуется с результатами Н.Г. Букун.

Обнаружен перегиб температурной зависимости ln(RF/T) от 1/Т на границах Ag с поликристаллическими образцами Ag4RbJ5 и смеси (5Ag4RbJ5+Rb2AgT3) (рис.11). Показано, что температура перегиба 288-ЗОО К совпадает с температурой границы термодинамической нестабильности суперионика 300-308К в пределах погрешности. Причем у более мелкодисперсного образца температура перегиба ниже. Близость энергий активации для a-AgJ и высокотемпературных ветвей позволяет говорить об образовании тонкой пленки йодистого серебра на поверхности суперионика в контакте с серебряным электродом. Низкотемпературные ветви с энергией активации 0,083-0,103eV связаны с разложением поверхностных слоев вследствие нестабильности суперионика ниже 288-3Q0K. На монокристалле такого эффекта не наблюдается, по-видимому, вследствие низкой дефектности структуры.

В шестой главе приводятся экспериментальные и теоретические результаты по исследованию кинетики не основных носителей. Предлагается модель центра окраски. Исследуются процессы диффузии ионов йода и центров окраски.

Диффузия ионов йода в монокристаллах изучена для интервала 444 .501 К. Для коэффициента диффузии получена зависимость

Dj - = {9,9* 10'2 ехр [-(0,98±0,08) эВ/кТ] }см2/с.

Учитывая низкое значение энергии активации (-0,58 eV), полученное Чеботиным и др. (1981) для диффузии ионов йода в поликристаллических образцах (интервал 296 .413К), можно предположить, что в интервале 296 .413К диффузия ионов У обусловлена примесными дефектами, а в интервале 444 .501К - собственными.

Приблизительная оценка верхнего значения коэффициента диффузии ионов Г в монокристаллах при 298К позволяет получить значение 4*10'16 см2/с. Столь низкое значение коэффициента диффузии говорит о высокой «жесткости» анионной подрешетки в Ag4RbJ5 при комнатной температуре.

Коэффициент диффузии элементарного йода при температуре 418К меньше, чем 2*10»12 см2/с. Однако было замечено, что даже при 298К окраска йода быстро распространяется в глубину кристалла.

Страницы: 1 2 3 4

Смотрите также

Качественное определение урана и тория в твердых материалах
Цель работы   1.Освоить методику качественного определения урана и тория в рудах, концентратах 2.Определить, присутствует или нет уран и торий в пробах руды ...

Физии обнаружили два ранее неизвестных свойства золота
Физики из Института технологий американского штата Джорджия сообщили об обнаружении двух ранее неизвестных свойств золота, которые драгоценный металл проявляет на микроскопическом уровне. В масштабе & ...

Сравнительный анализ: методы получения синтез-газа
...