Научная новизна и основные защищаемые положения
Статьи / Транспортные процессы и гетеропереходы в твердофазных электрохимических системах / Научная новизна и основные защищаемые положения
Страница 1

Впервые поставлена и решена проблема комплексного анализа структурных, оптических, термодинамических, электрохимических свойств суперионных проводников в монокристаллическом состоянии и процессов, протекающих с их участием на гетеропереходах. При этом получены следующие новые научные результаты:

Исследована система MJ-AgJ-CH3COCH3, и на основании полученных результатов разработан оригинальный метод выращивания монокристаллов суперионных проводников Ag4RbJ5, Ag+KJs, AgJ высокой чистоты.

Проведены исследования фазовых переходов. Экспериментально доказано, что фазовый переход в Ag4RbJs при 208К относится к переходам 5 первого рода. Исследована доменная структура, возникающая при температуре ниже 208 К. Показано, что размер доменов фазе определяется температурой и не носит релаксационного характера. Обнаружено, что при фазовом переходе 122К скрытая теплота выделяется в два этапа.

Обнаружен и исследован эффект аддитивного окрашивания монокристаллов AgiRbJs в парах йода. Предложена и экспериментально доказана модель образования центров окраски при нормальных условиях.

Проведены исследования диффузии центров окраски в Ag4RbJ5. Обнаружено влияние аддитивного окрашивания на электронную проводимость.

Проведены исследования процессов диффузии меченых атомов (Ag и J) на монокристаллах AgtRbJs. Получены температурные зависимости коэффициентов диффузии.

Проведены исследования электрохимических закономерностей на гетеропереходах с монокристаллическим суперионным проводником Ag4RbJ5. Обнаружено, что параметры гетероперехода, описывающие кинетику не основных носителей, зависят от кристаллографического направления.

Проведено исследование методом потенциодинамической вольтамперометрии и импеданса монокристалла на границе с обратимыми, инертными и необратимыми электродами. Предложены эквивалентные схемы, удовлетворительно описывающие электрохимическое поведение процессов на гетеропереходах. Рассчитаны энергии активации отдельных стадий электрохимических процессов.

Установлена взаимосвязь структуры, оптических свойств с электрохимическими. Обнаружено влияние дефектности структуры на ионную и электронную составляющие проводимости в диапазоне ОС. температур и концентраций.

Положения работы, выносимые на защиту.

Проведенные экспериментальные и теоретические исследования позволяют вынести на защиту следующие основные научные положения и результаты.

Исследования системы MJ-AgJ-СНзСОСНз и способ получения монокристаллов А&ДЫ5, Ag4KJ5, AgJ.

Термодинамические и оптические характеристики фазовых переходов.

Модель образования центров окраски при воздействии иода на монокристаллы суперионика. Экспериментальное подтверждение предложенной модели. Кинетические характеристики центров окраски и их влияние на проводимость.

Экспериментальные результаты определения параметров гетеропереходов с йодом и йодными комплексами. Установленные закономерности кинетики и механизма электродных процессов, протекающие на гетеропереходах с участием основных носителей заряда.

Экспериментальные результаты определения энергии активации ионной и электронной составляющих проводимости монокристаллов.

Экспериментальные исследования процессов диффузии серебра-ПО, иода-131, центров окраски.

Взаимосвязь между структурными, оптическимии электрохимическими свойствами монокристаллов.

Практическая ценность работы заключается:

В разработке метода и технологии выращивания совершенных, высокой чистоты монокристаллов Ag4RbJ5, Ag4KJ5 из системы MJ-AgJ-СН3СОСН3. Разработанный метод позволяет получать образцы для проведения прецизионных измерений электрических, термодинамических, оптических и других характеристик и материалы высокого качества для изготовления твердотельных функциональных элементов электронной техники. Разработан «метод выращивания монокристаллов AgJ.

В проведении комплекса экспериментальных исследований термодинамических характеристик, характеристик, описывающих кинетику основных и не основных носителей заряда в суперионных кристаллах. Полученные результаты являются справочными и могут быть использованы при определении оптимальных критериев для конструирования преобразователей энергии и информации.

Страницы: 1 2

Смотрите также

Никель (Niccolum), Ni
Никель - химический элемент первой триады VIII группы периодической системы Менделеева, атомный номер 28, атомная масса 58,70; серебристо-белый металл, ковкий и пластичный. Природный Н. состоит из сме ...

Технеций (Technetium), Те
Технеций был предсказан как эка-марганец Менделеевым на основе его Периодического закона. Несколько раз он был ошибочно открыт (как люций, ниппоний и мазурий), настоящий технеций был открыт в 1937 год ...

Химический элемент хром
Элемент №24. Один из самых твердых металлов. Обладает высокой химической стойкостью. Один из важнейших металлов, используемых в производстве легированных сталей. Большинство соединений хром ...