Механическое разделение.
Статьи / Термодинамическая оптимизация процессов разделения / Механическое разделение.
Страница 1

Рассмотрим систему разделения, использующую работу с интенсивностью p без подвода и отвода тепла (), при этом входные и выходные потоки имеют одинаковые температуры и давления.

Подводимая для разделения мощность

.

Первое слагаемое в этом выражении представляет минимальную мощность разделения, которая соответствует обратимому процессу (). Эта работа равна разности обратимой работы полного разделения исходного потока и суммарной обратимой работы полного разделения выходных потоков и

Обратимые оценки сильно занижены, реальная рабо­та разделения может оказаться существенно большей. Поэтому важно приблизить оценки к реальности за счет учета конечной продолжи­тельности процесса или заданной интенсивности потоков. При этом оценки должны включать коэффициенты массопереноса и зависеть от продолжительности процесса .

Для получения подобных оценок нужно выбрать такое изменение потоков массопереноса во времени или по длине аппарата, при котором работа разделения минимальна. Однако в большинстве аппаратов воз­можности изменения профиля концентраций ограничены. Изменять можно лишь краевые условия и расходы потоков. Схема Вант-Гоффа обладает большими возможностями управления. Поэтому естественно использовать ее для получения оценки минимальной работы разделе­ния при конечном времени.

Во всех рассмотренных примерах из уравнений термодинамических балансов,

вытекало, что показатель эффективности использования энергии в термодинамических системах (технический КПД) монотонно уменьшался с ростом производства энтропии , то есть с ростом необратимых потерь энергии. Величина зависит от кинетики тепло- и массообменных процессов, а также кинетики химических реакций. Уравнения кинетики связывают диссипативные потоки энергии и вещества с интенсивными переменными

взаимодействующих подсистем.

Задача оптимальной в термодинамическом смысле организации процесса состоит

в том, чтобы выбором температур, давлений, химических потенциалов взаимодействующих подсистем, а также коэффициентов в уравнениях кинетики добиться минимума производства энтропии при заданной интенсивности потоков. В распределенных стационарных системах (трубчатых теплообменниках, реакторах, колонных аппаратах и пр.) интенсивные переменные меняются по длине, и требуется найти оптимальный закон изменения этих переменных вдоль аппарата, в нестационарных процессах требуется найти закон изменения интенсивных переменных во времени.

Важным свойством производства энтропии в системе является ее аддитивность, что позволяет на первом этапе разбить сложную систему на отдельные подсистемы, оптимизировать каждую из подсистем при тех или иных параметрах поступающих и выходящих из нее потоков. На следующем этапе требуется так согласовать средние интенсивности потоков, чтобы удовлетворить системным связям и минимизировать суммарное производство энтропии.

Страницы: 1 2

Смотрите также

Постулаты квантовой механики
Каждый из постулатов квантовой механики, конечно, можно сформулировать в виде лаконичного математического утверждения, но, как всякое исходное допущение, любой из них построен на целой сово ...

Методы отделения и выделения следов элементов
Немногие из применяемых в колориметрии реактивов обладают достаточной избирательностью для определения элемента непосредственно в присутствии сопутствующих элементов, когда соотношения межд ...

Актиний (Actinium), Ac
Актиний — химический элемент с атомным номером 89, обозначается в периодической системе элементов символом Ac. Актиний - радиоактивный химический элемент III группы периодической системы Менделе ...