Теория хроматографии, хроматографический анализ, виды хроматографии
Статьи / Теория хроматографии, хроматографический анализ, виды хроматографии / Теория хроматографии, хроматографический анализ, виды хроматографии

Для объяснения явлений, происходящих при хроматографии, для расчета длины колонок, положения и формы пиков, для выбора оптимальных условий процессов существует два подхода - теория теоретических тарелок (ТТТ) и кинетическая теория. Согласно ТТТ, хроматографическую колонку можно представить в виде ряда узких соприкасающихся слоев, называемых теоретическими тарелками. Полагается, что в каждой такой тарелке устанавливается равновесие между ПФ и НФ. Чем больше таких равновесий, тем эффективнее разделение. Обычно для оценки эффективности колонки используют ВЭТТ Н и число теоретических тарелок N: чем больше N, или чем меньше н, тем эффективнее колонка.

Несмотря на то, что ТТТ содержит ряд расчетных уравнений, она не может объяснить, как скорость потока и характеристики наполнителя влияют на ширину зоны и, следовательно, на H и N. Это привело к появлению кинетической теории.

Кинетическая теория основана на скорости миграции вещества в колонке, которая определяется соотношением времени, проводимого молекулой в ПФ и НФ. эффективность колонки в кинетической теории связывают с кинетическим параметром - временем удерживания tr. Из соотношения следует, что чем больше tr, тем эффективнее колонка.

С позиций кинетической теории становится объяснимым факт совпадения формы хроматографического максимума с гауссовой кривой. В статистике симметричной колоколообразной гауссовой кривой описывают частоту (вероятность) появления отклонений случайного характера измеряемой величины от ее среднего значения при большом числе повторных измерений. Но и величина скорости молекул, движущихся по хроматографической колонке, тоже носит статистический характер. Вследствие хаотичного движения молекул они на своем пути претерпевают множество случайных столкновений. Поэтому одни молекулы могут продвигаться быстрее, чем другие. Границы хроматографической зоны при этом расширяются. Положительные и отрицательные отклонения случайного характера от среднего значения скорости движения молекул приводят к распределению молекул в хроматографической зоне, описываемому гауссовой кривой.

На продвижение частиц влияет ряд факторов, искажающих форму пика (делающих их несимметричными) и снижающих эффективность колонки, а именно: 1) структура НФ (размеры гранул, их однородность, плотность и равномерность заполнения колонки); 2) скорость установления равновесия сорбция-десорбция (массообмен); 3) диффузия молекул из зоны с большей концентрацией в зону с меньшей концентрацией.

Влияние этих факторов на эффективность колонки учитывается уравнением Ван-Деемтера:

,

где - скорость потока, A и В - константы, связанные со скоростью потока и коэффициентом диффузии в ПФ; C - константа, связанная с массообменом.

Из графического представления этого уравнения (рис.2.7.1) можно сделать вывод, что существует оптимальная скорость потока, при которой Н минимальная. Чтобы найти эту точку, продифференцируем данное уравнение и приравняем производную к нулю: , откуда = 2, а подставив в исходное уравнение, получим +2. Таким образом, кинетическая теория дает основу для оптимизации хроматографического процесса.

Смотрите также

Актиний (Actinium), Ac
Актиний — химический элемент с атомным номером 89, обозначается в периодической системе элементов символом Ac. Актиний - радиоактивный химический элемент III группы периодической системы Менделе ...

Реакции присоединения молекул НХ с кислым атомом водорода к ненасыщенным соединениям
Реакции присоединения различных молекул НХ (Х – ОН, Cl, ОАс, CN) к ненасыщенным молекулам (олефины, диены, алкины, нитрилы, альдегиды, кетоны и др.) занимают важное место в промышленном орга ...

Таллий (Thallium), Tl
Знаменитый Крукс, был большим специалистом по спектроскопии. Прекрасно понимая, что спектроскоп - мощный инструмент отыскания новых элементов, Крукс исследовал с его помощью огромное количество различ ...