Ансамбль и статистический вес, микросостояния и вероятности.Статьи / Статистическая термодинамика / Ансамбль и статистический вес, микросостояния и вероятности.
Количество микросостояний, совместимых с наблюдаемыми свойствами коллектива, принято называть статистическим весом W, или по Планку термодинамической вероятностью макросостояния W. Эти две величины, W и W, в нашем случае можно считать равноценными (но они всё же не идентичны). В методе Гиббса их вычисления можно избежать. Такая необходимость и возможность возникают лишь при анализе атомно-молекулярных систем в газах и кристаллах, при этом упрощается решение конкретных проблем.
Термодинамическая вероятность не может быть менее единицы W>1, и в большинстве рассматриваемых нами задач она не просто больше единицы, но очень большое целое число.
Математическая вероятность w<1 это всего лишь доля микросостояния в огромном ансамбле, и она отличается тем, что менее единицы.
Реально существуют и в химии играют важную роль такие системы, у которых возможные различные квантовые состояния очень мало различаются энергией, а коллектив это простая смесь из одинаковых частиц, но в разных квантовых состояниях.
В таких случаях математические вероятности микросостояний совпадают с мольными долями частиц, заселяющих эти уровни.
Отметим, что термодинамическая вероятность характеризует ансамбль в целом, тогда как математические вероятности – лишь элементы ансамбля – микросостояния.
Множество микросостояний, каким бы большим он ни казалось, дискретное, и потому счётное, и их можно нумеровать, пересчитывая посредством довольно простых приёмов комбинаторики, в которой основными понятиями являются перестановки, сочетания и размещения:
1) Число PN перестановок из N элементов равно
PN = N! =1´2´3´ . ´N
2) Число CNm сочетаний из N элементов по m элементов равно
CNm = N! /(m! N-m!) = [1´2´3´ . ´N] / [1´2´3´ . ´m] [1´2´3´ . ´(N-m)]
3) Число ANm размещений из N элементов по m элементов равно
ANm = N(N-1) (N-2) … [N-(m-1)] =N! /(N-m) !
Это формулы комбинаторики, хорошо известные из школьного курса математики.
Смотрите также
Производство бета-каротина
...
Теория молекулярных орбиталей в комплексных соединениях
Наиболее
общий подход к рассмотрению электронной структуры комплексов связан с
расчетами полных волновых функций комплекса как единого целого, а не только
центрального иона п ...