Определение кислотности методом Гамметта
Статьи / Стандартизация измерения рН в неводных средах. Методы определения рН стандартных буферных растворов / Определение кислотности методом Гамметта
Страница 1

Основываясь на том, что, как свидетельствуют экспериментальные данные, константы кислотности оснований (катионных кислот) сравнительно-мало изменяются при переходе от растворителя к растворителю, Гамметт предложил оценивать кислотность любых растворов по степени превращения индикатора основания в его ионную форму.

Известно, что величина рН водных растворов может быть определена про помощи индикаторов. В основе индикаторного метода лежит уравнение

pH=pK+lg(aAi/aHAi) (2.4.1)

где aAi и aHAi активности ионной и молекулярной формы индикатора.

В случае, если индикатором является основание, уравнение приобре­тает вид:

pH=pK+lg(aBi/aBHi) (2.4.2)

Различия в окраске основания и катионной кислоты, соответствующей этому основанию, или кислоты и аниона этой кислоты позволяют установить кислотность. Метод основан на том, что по окраске оценивают концентрацию кислой и основной форм индикатора. Сравнение окраски в данном растворе с окраской раствора, содержащего предельную форму индикатора в условиях, когда индикатор полностью превращен либо в кис­лоту, либо в основание, производится в колориметре. Особенно удобны для этих целей одноцветные индикаторы, у которых одна из форм окрашена, а другая не окрашена.

Не будем подробно останавливаться на методике индикаторного опре­деления рН. Отметим только, что при правильном осуществлении этот метод определения рН достаточно точен. Однако применение индикаторного метода не исключает ошибок, связанных со стандартизацией рН. Кроме того, индикаторный метод имеет ряд специфических ограничении, с которыми следует считаться.

Во-первых, если раствор содержит окислители или восстановители, то пользоваться колориметрическим методом следует с осторожностью, так как при этом может произойти окисление индикатора, и окраска (и ее интенсивность) будет изменяться не за счет изменения рН, а за счет окисления индикатора. К тому же многие вещества одновременно являются кис­лотно-основными и окислительно-восстановительными индикаторами и реагируют на наличие в растворах окислительно-восстановительных систем.

Во-вторых, индикаторы ограниченно применимы в небуферных системач, так как каждый индикатор — это или кислота., или основание, и прибавление их к небуферным системам создает определенную кислотность. В этих слу­чаях фактически измеряется та величина рН, которая создалась в результате растворения индикатора.

В-третьих, окраска индикатора изменяется в зависимости от ионной силы раствора.

В-четвертых, многие индикаторы реагируют с белками, поэтому в бел­ковых системах, в биологических средах индикаторный метод может при вести к так называемым белковым ошибкам.

Возвратимся к основному вопросу — к определению единой кислот ности. Согласно Гамметту, окраска одного индикатора изменяется в различных растворителях только в связи с изменением абсолютной кислотности растворов, а константа индикатора основания в любом растворителе остается неизменной. Соотношение основной и кислой форм индикатора изменяется только в связи с изменением кислотности раствора. Свою функцию кислот­ности Гамметт обозначает Н0, так как индикаторы основания не имеют электрического заряда. По Гамметту

Н0=pKa+lg(cB/cBH+) (2.4.3)

где pKa - показатель константы диссоциации индикатора как катионной кислоты в воде. Эта константа принимается неизменной.

В дальнейшем были введены другие функции кислотности. В тех слу­чаях, когда применяется в качестве индикатора незаряженная кислота и соответствующее ей основание имеет отрицательный заряд, функцию кислотности обозначают Н(-).

Метод Гамметта чрезвычайно прост и не связан с измерением потен­циалов, не имеет осложнений в связи с возникновением потенциалов на границе двух фаз. Поэтому он представляет значительный интерес и нашел широкое применение.

Страницы: 1 2 3 4

Смотрите также

Хром (Cromium), Cr
Хром встречается в природе в основном в виде хромистого железняка Fe(CrO2)2 (хромит железа). Из него получают феррохром восстановлением в электропечах коксом (углеродом): FeO·Cr2O3 + 4C → ...

Моделирование процессов переработки пластмасс
Курсовая работа содержит расчет температурного поля литникового канала  литьевой формы, теоретические сведения о процессах происходящих в химической технологии связанных с охлаждением и наг ...

Проектирование вертикального аппарата с приводом и мешалкой
...