Рециркуляционная схема с рециклом, охватывающим один реактор.
Статьи / Сравнительный анализ рециркуляционных схем на примере реакции изомеризации / Рециркуляционная схема с рециклом, охватывающим один реактор.
Страница 1

Рассмотрим рециркуляционную систему (рис.2.2), состоящую из двух реакторов идеального смешения и ректификационной колонны, где рецикл охватывает только один реактор.

В реакторах протекают обратимые реакции типа AB, скорость которых подчиняется закону действующих масс. На вход в систему подается чистый реагент А, реакционная смесь зеотропна, колонна обладает бесконечной эффективностью по разделению, реагент А является легколетучим компонентом. Тогда в соответствии с обозначениями на (рис.2.3) система балансовых уравнений в статике относительно реагента А имеет вид:

Для смесителя:

G = F + R (2.25)

Gxg = Fxf1 + Rxr (2.26)

R Xr

V1 V2

F F G L

Xf Xf1 Xg Xl2

W, Xw

Рис.2.3. Рециркуляционная система. Реактор-ректификационная колонна.

С охватом рециклом одного реактора.

Для колонны:

L = W + R (2.27)

Lxl2 = Wxw + Rxr (2.28)

Для реакторов:

Для первого реактора:

Fxf = Fxf1 + V1rA1 (2.29)

Где rA1 = k+xf1 – k-(1 – xf1) (2.30)

Для второго реактора:

G = F + R (2.31)

Fxf1 + Rxr = Lxl2 – V2rA2 (2.32)

Где rA2 = k+xl2 – k-(1 – xl2) (2.33)

Для системы в целом:

Fxf – Wxw = rA1V1 + rA2V2 (2.34)

Где rA1, rA2 – скорости химической реакции по реагенту А в первом и втором реакторах, V1, V2 – объемы реакционной зоны.

Выразим скорость химической реакции, протекающей в первом реакторе.

Для этого из (2.30) выразим сдержание компонента А на выходе из реактора xf1

Xf1 = (2.35)

И подставим его в выражение (2.29), принимая, что на вход в систему подается чистый компонент А, xf = 1:

F – – V1rA1 = 0 (2.36)

После преобразований:

rA1 = (2.37)

Теперь выразим скорость химической реакции, протекающей во втором реакторе:

Содержание компонента А на выходе из реактора

xl2 = (2.38)

Подставим (2.38) и (2.35) в (2.32), принимая, что в рецикле чистый компонент А, xr = 1:

(2.39)

После преобразований

rA2 = (2.40)

затем, подставляя (2.37), получим выражение для скорости химической реакции во втором реакторе:

rA2 = (2.41)

Для того чтобы достичь полного превращения сырья производительность реактора должна равняться количеству реагента А, поступающего на вход в систему

F = rA1V1 + rA2V2 (2.42)

Подставим выражения (2.37) и (2.41) в (2.42):

F = (2.43)

После преобразований

L = (2.44)

где L = R + F.

Мы получили аналитическую зависимость величины рецикла от объема реакторов.

По этому выражению мы можем построить и проследить зависимость величины рецикла от объема реакторов.

Примем k+, k - и F постоянными, а объемы реакторов равными между собой

V1 = V2.

k+ = 2

k - = 1

F = 10кмоль/час. При этих значениях с помощью программы Eсxel численно просчитаем, по формуле (2.44), зависимость величины рецикла от объема. Результаты представлены в таблице 2.2.

V1

V2

V

R

4

4

8

63,33333

5

5

10

27,5

7

7

14

14,65909

10

10

20

10

20

20

40

6,8

30

30

60

6,071429

40

40

80

5,757576

50

50

100

5,584416

Страницы: 1 2

Смотрите также

Полоний (Polonium), Po
Полоний - радиоактивный химический элемент VI группы периодической системы Менделеева, атомный номер 84. П. - первый элемент, открытый по радиоактивным свойствам П. Кюри и М. Склодовской-Кюри 1898 (см ...

Скандий (Scandium), Sc
Скандий - химический элемент III группы периодической системы Менделеева: атомный номер 21, атомная масса 44,9559; лёгкий металл с характерным жёлтым отливом, который появляется при контакте металла с ...

Поливинилпирролидон: его применение и важнейшие характеристики
  Поливинилпирролидон является виниловым полимером. В основном его получают методом радикальной виниловой полимеризации из мономера винилпирролидона. ...