Прогнозирование энтальпии органических соединений методом Татевского по связямСтатьи / Прогнозирование энтальпии органических соединений методом Татевского по связямСтраница 8
При этом обращает на себя внимание тот факт, что ни один из рассмотренных подходов не изменил ситуацию при прогнозировании алканов с любым количеством разветвлений в молекуле, особенно для структур, изученных в [28].
Очевидно, что погрешность в оценках свойства, достигающая нескольких десятков кДж/моль, мало кого может устроить. При этом увеличение глубины детализации рассмотренного метода не дало значимых результатов. Значит, при использовании аддитивных методов для сильно разветвленных структур необходимо рассмотреть иные подходы, позволяющие учесть специфику взаимного расположения групп атомов, ответственных за напряжение в молекуле. Один из таких приемов неоднократно описывался в литературе и состоит в использовании в расчете структурных элементов, представленных несколькими атомами. Принципы классификации структурных элементов, больших, чем единичные атомы, достаточно подробно рассмотрены Татевским в [9].
В соответствии со сказанным схема Татевского по связям, учитывающая только валентные взаимодействия углеродных атомов (уровень 1), была дополнена нами парциальными вкладами для фрагментов молекул, представленных тремя последовательно расположенными атомами углерода. На первом шаге оптимизации рассматривались указанные фрагменты всех разновидностей с применением всего массива экспериментальных данных. В результате было установлено, что значимыми являются только семь парциальных вкладов (табл. 1.10, столбец – “напряженные”) для “троек” атомов с участием четвертичного углеродного атома. Ограниченный объем фактического материала не позволяет в настоящее время обеспечить высокую представительность всех параметров, приведенных в табл. 1.10 для напряженных структур: при определении двух парциальных вкладов участвовали по одному веществу и двух - по два вещества. Тем не менее следует признать, что все параметры взаимно непротиворечивы. Их применение позволяет снизить среднее абсолютное отклонение в расчете с 2,5 кДж/моль до 1,5 кДж/моль для всего объема рассмотренных соединений. Для той же выборки веществ метод Татевского с набором параметров в редакции [11] дает среднюю погрешность в оценках, равную 2,8 кДж/моль, метод Бенсона в редакции [5] – 6,2 кДж/моль.
Таким образом, на рассмотренном примере мы попытались изложить некоторые важные аспекты анализа и совершенствования аддитивных методов, уточнили значения параметров одной из аддитивных схем, показали ее лучшую по сравнению с методом Бенсона работоспособность в приложении к алканам и обозначили проблему прогнозирования алканов, имеющих значительные напряжения в молекуле. Очевидно, что такие же проблемы возникнут и при расчете энтальпий образования соединений других классов с сильно разветвленными алкильными заместителями. Аналогичный подход использован нами для некоторых технически важных веществ других классов органических соединений. Результаты представлены ниже с необходимым комментарием.
Алкилбензолы и их функциональные производные
Объем экспериментальных сведений для ароматических углеводородов существенно меньше, чем для алканов, и строение молекул соединений, для которых имеются надежные калориметрические данные, не отличается большим разнообразием. Это не позволяет в настоящее время выработать подходы к прогнозированию их энтальпий образования, опираясь только на калориметрические данные. Для этой цели нами использована вся совокупность фактического материала и возможности неэмпирических методов расчета энергии и геометрии молекул, а также метода молекулярной механики с силовым полем Эллинджера.
В результате можно с уверенностью говорить о том, что при использовании любого аддитивного метода для алкилароматических углеводородов необходимо вводить поправки, природа которых в основном имеет стерическое происхождение. Величина этих поправок никоим образом не является постоянной, как это принято, например, в методе Бенсона, а зависит от эффективных размеров взаимодействующих групп, от количества рядом расположенных заместителей и от их взаимной ориентации.
Смотрите также
Химия воды и микробиология
...
Исследование и разработка новых сорбентов
Развитие
науки на пороге XXI века
было бы невозможно себе представить без введения и использования новых
технологий. Одной из развивающихся и прогрессирующих наук в наше время является
био ...