Основы квантовой механики атома. Соотношение де Бройля. Уравнение Шредингера.
Статьи / Применение сингулярной матрицы в химии / Основы квантовой механики атома. Соотношение де Бройля. Уравнение Шредингера.
Страница 1

Химические процессы сводятся к превращению молекул, т.е. к возникновению и разрушению связей между атомами. Поэтому важнейшей проблемой химии всегда была и остается проблема химического взаимодействия, тесно связанная со строением и свойствами вещества. Современная научная трактовка вопросов химического строения и природы химической связи дается квантовой

механикой

– теорией движения и взаимодействия микрочастиц (электронов, ядер и т.д.).

Одним из общих свойств материи является ее двойственность. Частицы материи обладают одновременно и корпускулярными и волновыми свойствами. Соотношение "волна – частица" таково, что с уменьшением массы частицы ее волновые свойства все более усиливаются, а корпускулярные – ослабевают. Когда же частица становится соизмеримой с атомом, наблюдаются типичные волновые явления. Одновременно оказывается невозможным описание движения и взаимодействия микрочастиц-волн законами движения тел с большой массой. Первый шаг в направлении создания волновой, или квантовой механики, законы которой объединяют и волновые, и корпускулярные свойства частиц, сделал де Бройлем (1924). Де Бройль высказал гипотезу, что с каждой материальной частицей связан некоторый периодический процесс. Если частица движется, то этот процесс представляется в виде распространяющейся волны, которую называют волной де Дройля

, или фазовой волной

. Скорость частицы V связана с длиной волны λ соотношением де Бройля

:

(1)

где m – масса частицы (например, электрона);

h – постоянная Планка.

Уравнение (1) относится к свободному движению частиц. Если же частица движется в силовом поле, то связанные с ней волны описываются так называемой волновой функцией

. Общий вид этой функции определил Шредингер (1926). Найдем волновую функцию следующим путем. Уравнение, характеризующее напряженность поля Еа плоской монохроматической волны света, можно записать в виде:

, (2)

где Еа0 – амплитуда волны;

ν – частота колебаний;

t – время;

λ – длина волны;

х – координата в направлении распространения волны.

Так как вторые производные от уравнения плоской волны (2), взятые по времени t и координате х, равны соответственно:

, (3)

, (4)

то

Подставляя λ=с/ V (с – скорость света), получаем волновое уравнение для плоской световой волны:

, (5)

Последующие преобразования основываются на предположениях, что распространение волн де Бройля описывается аналогичным уравнением, и что эти волны становятся стационарными и сферическими. Сначала представим, что по уравнению (5) изменяется значение новой функции ψ от координат (χ, y, z), имеющей смысл амплитуды некоторого колебательного процесса. Тогда, заменяя Еа на ψ, получим волновое уравнение в форме:

, (6)

После исключения t (с помощью (3)) волновое уравнение примет вид:

, (7)

где ψ – так называемая волновая функция

– величина, периодически изменяющаяся по закону гармонического движения;

ν2 – оператор Лапласа, означающий, что над функцией производится следующее действие:

.

Будем считать, что волновое уравнение (7) описывает движение частицы. Тогда λ

длина фазовой волны

, а ψ

амплитуда фазовой волны

в любой произвольно взятой точке χ, y, z, характеризующей местоположение частицы. Длину и амплитуду фазовой волны можно связать с массой и энергией частицы. Если частица движется в потенциальном поле, то ее полная энергия Е складывается из кинетической энергии Ек = mV2/2 и потенциальной энергии Еп. Отсюда

½mV2 – Е – Еп или m2V2 = 2m(E – Eп).

Учитывая соотношение де Бройля, запишем

m2V2 = h2/λ2 и λ2 = h2/2m (E – Eп)

и представим волновое уравнение в следующем виде:

(8)

В этой форме волновое уравнение называется уравнением Шредингера

Страницы: 1 2

Смотрите также

Кюрий (Curium), Cm
Назван в честь Пьера и Марии Кюри. Кюрий-242 в виде окиси (плотность около 11,75 и период полураспада 162 дня) применяется для производства компактных и чрезвычайно мощных радиоизотопных источников эн ...

Рентгенофлуоресцентное определение редких элементов Sr, Rb, Nb в литий-фтористых редкометальных гранитах
Научный и практический интерес к литий-фтористым редкометальным гранитам обусловлен уникальностью их химического и минерального состава, а также экстремальными (вплоть до рудных) концентраци ...

Технико-экономический расчет ОАО "СамараОРГСИНТЕЗ"
...