Применение сингулярных матриц при многомерном анализе химических данных факторными методами. Общие сведения о факторных методах
Статьи / Применение сингулярной матрицы в химии / Применение сингулярных матриц при многомерном анализе химических данных факторными методами. Общие сведения о факторных методах

Многомерный анализ данных играет все возрастающую роль во многих научных дисциплинах, включая науки о земле, жизнеобес­печении, в социологии, а также менеджменте. Однако в химии эти методы развивались не так быстро. Хотя основы методов были созданы в начале века, а области их применения были опре­делены в тридцатых годах , первые случаи их использова­ния отмечены только в шестидесятых годах. Действительно, наи­более часто применяемыми в хемометрике методами стали фактор­ный анализ (ФА), анализ (метод) главных компонент (МГК) и факторный дискриминантный анализ (ФДА).

Хемометрика преследует две цели :

· извлечение максимума информации за счет анализа химиче­ских данных;

· оптимальное планирование измерительных процедур и экспе­риментов.

Первая цель может быть подразделена на две:

1) описание, классификация и интерпретация химических данных;

2) моделирование химических экспериментов, процессов и их последующая оптимизация.

Из всего многообразия видов обработки наборов химических данных можно выделить некоторые наиболее характерные области применения:

· многокомпонентный анализ спектрометрических или хромато-графических данных различных смесей. Цель анализа — опреде­ление числа компонентов и иногда также их идентификация. Для решения задач, связанных с равновесиями в растворе и сложной кинетикой, используется факторный анализ;

· поиск неизмеряемых факторов, отражающих те физико-хими­ческие свойства, которые оказываются слишком сложными для точного моделирования, например, таких, как:

а) времена задержки для хроматографии;

б) данные по химическому сдвигу;

в) константы равновесия и кинетические константы;

г) данные по степени превращения и селективности.

Интерпретация этих факторов может высветить новые явле­ния или подчеркнуть те физические свойства, которые помогут объяснить исходные наблюдения:

· сведение наборов химических данных с большим числом пере­менных (которые часто коррелируют, а иногда и избыточны) к на­борам с меньшим числом независимых переменных. Каждая точ­ка будет характеризоваться меньшим числом новых переменных, которые затем могут быть использованы для модельных исследо­ваний. Этот метод можно применять для многокомпонентных природных продуктов со сложными физико-химическими свойства­ми (эфирные масла, продукты из сырой нефти и т. д.), а также для замеренных в ходе процесса наборов данных;

· анализ многомерных наборов химических данных посредством графического представления объектов и переменных в векторном подпространстве с меньшим числом измерений. Подобное пред­ставление позволяет осуществить обзор всего набора данных для классификации объектов и объяснения их положения.

Цель данного пункта моего реферата — введение в методы факторного анализа с рассмотрением его теоретических основ и практических приложений.

Факторный анализ (ФА), анализ главных компонент (МГК) и факторный дискриминантный анализ (ФДА) будут представлены на различных специально подобранных примерах, иллюстрирую­щих множество областей их применения.

Смотрите также

Неон (Neonum), Ne
Неон - химический элемент VIII группы периодической системы Менделеева, относится к инертным газам, атомный номер 10, атомная масса 20,179. На Земле присутствует главным образом в атмосфере, содержани ...

Методика решения задач по теоретическим основам химической технологии
...

Нептуний (Neptunium), Np
Нептуний был впервые получен Э.М. Макмилланом и Ф.Х. Абельсоном в 1940 году. Назван в честь планеты Нептун. В природе содержится в качестве примеси в урановых рудах. Нептуний получают восстановлением ...