Постулат 5. Средние значения динамических переменныхСтатьи / Постулаты квантовой механики / Постулат 5. Средние значения динамических переменных
2.5.1. Среднее значение динамической переменной , получаемое из множества измерений, равно математическому ожиданию этой величины:
(2.30)
Если волновая функция нормирована, то знаменатель единичен, и получаем более простое выражение;
(2.31)
2.5.2. Покажем, что у чистых состояний квантово-механической системы средние значения наблюдаемых переменных совпадают с собственными значениями соответствующих эрмитовых операторов. В этом случае формулы (2.30) и (2.31) непосредственно следуют из фундаментального операторного уравнения (1.1).
Чтобы показать это, запишем уравнение (1.1) с помощью символики Дирака, далее слева скалярно домножим каждую его часть на бра-вектор | и выделим в правой части равенства собственное число . В итоге приходим к формулам (2.30) и (2.31). Цепочка простейших преобразований имеет вид:
Для общего случая смешанных состояний подобного обоснования нет, и формулы (2.30) и (2.31) постулируются. Этот постулат приобретает уже универсальное содержание. С его помощью можно рассчитывать средние значения даже тех динамических переменных, операторы которых не обладают дискретными спектрами волновых функций и собственных значений, например, координаты и потенциальной энергии.
Смотрите также
Аргон (Argon), Ar
В конце XIX века техника и наука обогатились созданием ряда инструментов для определения физико-химических свойств различных элементов. Развитие науки требовало точных знаний о свойствах веществ. Поэт ...
Методы активации химических процессов
Для
интенсификации технологических процессов применяют различные физические факторы
воздействия, в частности акустические колебания. Изучением взаимодействия
мощных акустических волн с веще ...