Энергетические уровни жесткого ротатора и его спектрСтатьи / Полярные диаграммы и энергетические уровни волновых функций жесткого ротатора / Энергетические уровни жесткого ротатора и его спектр
Поскольку квадрат момента импульса в жестком ротаторе однозначно связан с энергией (4.47), формула (4.101) позволяет легко рассчитать его уровни и спектральные термы (Т
), т.е. уровни, выраженные в единицах измерения волнового числа (см–1 ) , являющегося характеристикой излучения
(4.105)
. (4.105)
(4.107)
Величина В, определяемая (4.107), называется вращательной постоянной ротатора.
4.3.7.2. Обозначим величину и составим таблицу 4.5 возможных значений энергии жесткого ротатора, а на рис. 4.5. представим его энергетическую диаграмму.
4.3.7.3. Подобно плоскому ротатору, энергетическая диаграмма жесткого ротатора демонстрирует расходящуюся систему уровней, однако значительно возрастает кратность вырождения. Расстояния между соседними уровнями увеличиваются с ростом квантового числа l, причем они линейно связаны с квантовым числом нижнего уровня l:
. (4.108)
Таблица 4.5.
Уровни жесткого ротатора
l |
Символ уровня |
Энергия Е, |
Вырождение g=2l+1 |
0 |
S |
0 |
1 |
1 |
P |
2 |
3 |
2 |
D |
6 |
5 |
3 |
F |
12 |
7 |
4 |
G |
20 |
9 |
Рис. 4.5. Энергетическая диаграмма жесткого ротатора.
Для жесткого ротатора, например, двухатомной молекулы, разрешены спектральные переходы между соседними уровнями . Поэтому, согласно уравнению 4.108, ее спектр представляет собой набор линий, отстоящих друг от друга на примерно одинаковую величину, равную в энергетической шкале, или 2В в шкале волновых чисел .
Поскольку вращательная постоянная связана с моментом инерции, изучение вращательных спектров молекул даёт возможность экспериментального определения момента инерции молекул и, следовательно, межатомных расстояний.