Химические методы обнаружения и измерения радиоактивного излучения
Периодическая система / Методы обнаружения и измерения радиоактивного излучения радия и тория / Химические методы обнаружения и измерения радиоактивного излучения

Поглощение энергии ионизирующих излучений в веществе может вызывать различные химические реакции, приводящие к необратимым изменениям в химическом составе вещества. Измеряя выход химических реакций, т.е. количество вновь образованных конечных продуктов реакций, можно определить поглощенную энергию. На этом принципе основаны химические методы обнаружения и измерения радиоактивного излучения.

Достоинство химических детекторов заключается в возможности выбора таких веществ, которые по воздействию на них ионизирующих излучений мало отличаются от тканей. Следовательно, химические изменения, происходящие в этих веществах под действием излучения, могут непосредственно служить мерой энергии излучения, поглощенной тканью. Химические детекторы могут быть использованы для измерений больших доз гамма-излучения/3/.

Можно выделить следующие виды детекторов:

Жидкостные детекторы:

Ферросульфатный детектор основан на свойстве ионов двухвалентного железа окисляться в кислой среде радикалами ОН* до трехвалентного железа. Ферросульфатный детектор чувствителен к органическим примесям и требует насыщения кислородом. Недостатком считается низкая чувствительность.

7

Нитратный детектор основан на свойстве ионов нитрата востанавливаться атомарным водородом до нитрит ионов, которые могут быть обнаружены рядом индикаторов. Имеют широкий диапазон измерения поглащения доз гамма-излучения. Недостатком является невысокая чувствительность.

Цериевый детектор нечувствителен к содержанию кислорода. Недостатком является невысокая чувствительность.

Детектор на основе хлорзамещенных углеводородов:

Детектор на основе хлороформа позволяет определять дозу гамма-излучения начиная с 10 рад. Недостатком является недостаточная термическая устойчивость, зависимость радиационного выхода от температуры и мощность дозы, чувствительность к примесям и дневному свету, плохая стабильность при хранении.

Детектор на основе четыреххлористого углерода. Недостатком является недостаточная термическая устойчивость, зависимость радиационного выхода от температуры и мощность дозы, чувствительность к примесям и дневному свету, плохая стабильность при хранении.

Смотрите также

Кислород (Oxygenium), О
Кислород - химический элемент VI группы периодической системы Менделеева; атомный номер 8, атомная масса 15,9994. При нормальных условиях К. - газ без цвета, запаха и вкуса. Трудно назвать другой элем ...

Полупрепаративный микробиологический синтез биологически активных соединений, меченных стабильными изотопами водорода и углерода
...

Приложение 9
Для контроля знаний по теме “Подгруппа углерода” можно привести несколько примеров в виде тестов. Карточка 1. 1. Электронная конфигурация атома углерода в свободном состоянии: а) 1s2 2s2 2p ...