Информационный анализ
Периодическая система / Магнитопласты / Информационный анализ
Страница 1

Наполнение является одним из наиболее распространённых способов физического модифицирования полимеров с целью придания им специфических свойств (теплостойкости, механической прочности, сопротивления усталости, уменьшения усадки, абразивной способности, магнитной восприимчивости). Традиционный способ получения таких композиций заключается в механическом смешении расплава или раствора полимера с дисперсными наполнителями на специальном оборудовании [14]. Однако получение высоконаполненного полимерного композиционного материала с хорошими механическими свойствами прямым смешением полимера с наполнителем затруднено из-за неравномерного распределения малых количеств высоковязкого полимера в большом объёме дисперсной фазы [15]. Поэтому особый интерес представляет разработка эффективных технологий получения и переработки ПКМ в различные изделия. Такими способами создания полимерных высоконаполненных и армированных композиций являются методы микрокапсулирования частиц наполнителя в полимерном связующем [16-24].

На кафедре химической технологии СГТУ разработан и запатентован новый альтернативный метод получения ПКМ с улучшенными свойствами ─ поликонденсационное наполнение. Сущность поликонденсационного метода заключается в проведении процесса синтеза полимерного связующего из мономеров непосредственно в структуре и на поверхности волокнистых и дисперсных наполнителей. Вероятности взаимодействия способствует пропитка волокон мономерами, в результате чего достигается более глубокое проникновение молекул мономеров через аморфизированную часть, капилляры, пустоты и дефекты в структуру наполнителей.

В работе [25] доказаны преимущества поликонденсационного наполнения. При создании ПКМ различного функционального назначения на 20 % возрастает устойчивость к удару и изгибу и на 50% адгезионная прочность, увеличивается водостойкость, снижается горючесть (КИ возрастает в 1,4 раза).

Несомненными преимуществами альтернативной технологии ПКМ являются интенсификация технологического процесса, малостадийность (число стадий сокращается с 10 до 3), снижение материальных, энергетических и трудовых затрат, а также уменьшение экологической напряженности (исключение легколетучих органических растворителей) [16,21].

Полимерные композиционные материалы, полученные поликонденсационным способом, значительно отличаются от материалов традиционного формования на основе полимерного связующего. Формирование более плотной и в большей мере сшитой структуры отражается и на поведении композиций при воздействии внешних факторов. Так, заметно повышается устойчивость материала к воздействию динамического нагрева и устойчивость к горению. Например, потери массы при горении уменьшаются в 3-5 раз, продолжительность самостоятельного горения близка к нулю.

Способом поликонденсационного наполнения разработаны материалы для очистки промышленных стоков с различными загрязнениями, применение которых высокоэффективно и экономически целесообразно [26].

Разработанный способ эффективен при получении металлонаполненных композиций; сформированные магнитопласты обладают эксплуатационными характеристиками на уровне лучших отечественных и зарубежных образцов и по теплостарению находятся на уровне мировых стандартов.

Предлагаемый способ получения магнитных композиционных материалов заключается в пропитке магнитного дисперсного наполнителя мономерами ─ фенолом, формальдегидом в присутствии катализатора с последующим синтезом фенолформальдегидного олигомера на поверхности магнитного наполнителя, сушке при повышенной температуре. В качестве магнитных наполнителей использовали порошок феррита бария и интерметаллический сплав железо-неодим-бор (Fe-Nd-B).

Для сравнения были изготовлены магнитопласты из тех же магнитотвёрдых наполнителей с эквивалентным количеством фенолформальдегидного связующего по традиционной смесевой методике. Отпрессованные образцы намагничивались в импульсивном магнитном поле напряжённостью 10-30 КЭ и оценивали плотность, остаточную индукцию, максимальное энергетическое произведение, прочность при слоевом сдвиге (табл. 1).

Таблица 1

Эксплуатационные характеристики магнитопластов

Способ получения

Показатели

Остаточная магнитная индукция Br , Тл

Плотность,

кг/м3×10-3

Прочность при межслоевом сдвиге,

МПа

Поликонденсационный

0,18 / 0,6

3,8 / 6,7

36 / 8,9

Традиционный

0,11 / 0,4

3,6 / 5,8

18 / 5,0

Страницы: 1 2 3 4 5

Смотрите также

Углерод и его свойства
Углерод (лат. Carboneum), С - химический элемент IV группы периодической системы Менделеева. Известны два стабильных изотопа 12С (98,892 %) и 13С (1,108 %).  Углерод известен с глубокой ...

Физики сымитируют большой взрыв в пробирке
Физики создали "вселенную в пробирке", которую можно использовать для проверки универсальных теорий природы Вселенной. Была взята пробирка размером с мизинец, которую охладили до температу ...

Хром (Cromium), Cr
Хром встречается в природе в основном в виде хромистого железняка Fe(CrO2)2 (хромит железа). Из него получают феррохром восстановлением в электропечах коксом (углеродом): FeO·Cr2O3 + 4C → ...