Дисперсные системыМатериалы / Дисперсные системыСтраница 5
Понятие агрегативной устойчивости, которое впервые ввел Н.П. Песков, подразумевает отсутствие агрегирования, т.е. снижения степени дисперсности коллоидной системы при хранении. Для определения кинетической устойчивости необходимо изучать условия выделения диспергированных частиц в гравитационном или центробежном поле. Скорость подобного выделения зависит от интенсивности броуновского движения частиц, т.е. от степени дисперсности системы и разности плотности дисперсионной среды и дисперсной фазы, а также от вязкости среды.
Таблица 3
Связнодисперсные системы
1. Системы с жидкой поверхностью раздела фаз |
2. Системы с твердой поверхностью раздела фаз |
Г1/Ж2 – пены Ж1/Ж2 – пенообразные эмульсии |
Г1/Т2 - пористые тела, натуральные волокна, пемза, губка, древесные угли Ж1/Т2 – влага в граните Т1/Т2 – взаимопроникающие сетки полимеров |
Если хотят определить агрегативную устойчивость системы, то исследуют условия постоянства (или напротив - непостоянства) степени дисперсности системы. Одно из самых резких и характерных отличий коллоидной системы как от истинного раствора, так и от грубодисперсных систем состоит в том, что их степень дисперсности является чрезвычайно непостоянной величиной и может изменяться в зависимости от самых разнообразных причин.
В основе этой классификации лежит агрегатное состояние поверхности раздела фаз.
На основании изложенного выше дадим определение коллоидным системам.
Коллоидными системами называют двух-или многофазные системы, в которых одна фаза находится в виде отдельных мелких частиц, распределенных в другой фазе. Такие ультрамикрогетерогенные системы с определенной (коллоидной) дисперсностью проявляют способность к интенсивному броуновскому движению и обладают высокой кинетической устойчивостью.
Имея высокоразвитую поверхность раздела фаз и, следовательно, громадный избыток свободной поверхностной энергии, эти системы являются принципиально термодинамически неустойчивыми, что выражается в агрегации частиц, т.е. в отсутствии агрегативной устойчивости. Однако этими свойствами не исчерпываются все особенности, которыми коллоидные системы отличаются от других систем. Так, например, на первый взгляд кажется непонятным, почему коллоидные частицы, совершая энергичные движения и сталкиваясь между собой, не всегда слипаются в более крупные агрегаты и не выпадают в осадок, как этого следовало бы ожидать на основании второго закона термодинамики, так как при этом уменьшалась бы общая поверхность, а с ней и свободная энергия.
Оказывается, во многих случаях устойчивость таких систем связана с наличием слоя стабилизатора на поверхности коллоидных частиц. Таким образом, необходимым условием создания устойчивых коллоидных систем является присутствие третьего компонента - стабилизатора. Стабилизаторами коллоидных систем могут быть электролиты или некоторые другие вещества, не имеющие электролитной природы, например высокомолекулярные соединения (ВМС) или поверхностно-активные вещества (ПАВ). Механизм стабилизации электролитами и неэлектролитами существенно различен.
Влияние электролитов на устойчивость коллоидных систем носит сложный характер. В одних случаях ничтожные добавки электролита способны привести к нарушению устойчивости системы. В других - введение электролита способствует увеличению стабильности.
Образование адсорбционных слоев таких стабилизаторов, как ПАВ, приобретает особенно большое значение при наличии двухмерных структур, обладающих повышенными структурно-механическими свойствами. Во многих случаях стабилизация достигается при покрытии монослоем всего 40-60 % поверхности коллоидных частиц, когда защитный слой имеет прерывистый характер (в форме островков). Максимальная устойчивость достигается, естественно, при образовании полностью насыщенного мономолекулярного слоя. Структурно-механические свойства адсорбционных слоев в значительной мере определяют поведение коллоидных систем. Эти слои могут быть образованы или изменены небольшими количествами каких-либо растворенных веществ, поэтому создается возможность регулирования ряда свойств коллоидных систем, что широко используется в различных практических приложениях.
Коллоидные системы, состоящие из частиц диспергированного вещества, способных свободно перемещаться в жидкой дисперсионной среде совместно с адсорбированными на их поверхности молекулами или ионами третьего компонента (стабилизатора), называют лиозолями, а сами частицы, обладающие сложным строением - мицеллами.
Смотрите также
Заключение
В ходе работы
удалось проследить взаимосвязь между школьными предметами: химией, географией,
физикой, биологией, математикой. Ознакомилась с методами и путями реализации
МПС и опробовала на педагог ...
Получение сорбционных материалов с биогенными элементами
...
Спроектировать ректификационную установку для разделения бензол – толуол
...