Инфракрасная спектроскопияМатериалы / Инфракрасная спектроскопияСтраница 4
Инфракрасная спектроскопия широко применяется для анализа биологических жидкостей, в частности крови и ее фрагментов, а в последнее время для диагностики и прогнозирования различных заболеваний все в возрастающей степени используется ротовая жидкость или смешанная слюна, однако интерпретация полученных результатов осложняется в связи с многокомпонентностью объектов исследования.
При инфракрасной спектроскопии крови и слюны возможен количественный анализ только функциональных групп, входящих в основные компоненты в аналитических количествах. Поэтому анализ образцов данных жидкостей вызывает затруднения, т.к. по существу анализируется их водная основа
В медицине инфракрасной спектроскопии в последние годы используют для определения некоторых веществ в биологических жидкостях: крови, моче, слюне, слезной жидкости, желчи, молоке, для идентификации некоторых витаминов, гормонов и других биологически активных веществ.
Кроме того, в последнее время метод находит все более широкое применение для характеристики конформационных и структурных изменений белков, липидов, фосфолипидов биомембран клеток, исследуемых в биоптатах, а также с помощью волоконно-оптических методик.
С помощью этого метода можно оценивать фармокинетику различных лекарственных препаратов. При сахарном диабете выявлены достоверно значимые изменения инфракрасного спектра крови Доказана возможность использования показателей инфракрасного спектра для ранней диагностики стоматологических заболеваний и прогнозирования кариеса зубов у детей. Проведено исследование быстрых изменений показателей инфракрасного спектра крови для прогнозирования, диагностики и определения степени тяжести остеопороза и эффективности его лечения. Доказана возможность использования инфракрасной спектроскопии для изучения процессов регенерации.
Инфракрасная спектроскопия применяется также и в судебном анализе для изучения митохондриального генома при идентификации личности и определении отцовства, т.к. идентифицируется генетический фокус DIS80, содержащий переменные числа тандемных дупликаций.
Приборы для инфракрасной спектроскопии
Для регистрации спектров используют классические спектрофотометры и фурье-спектрометры.
Исследовательский ИК спектрометр Varian Scimitar 1000 FT-IR
Основные части классического спектрофотометра - источник непрерывного теплового излучения, монохроматор, неселективный приемник излучения. Кювета с веществом (в любом агрегатном состоянии) помещается перед входной (иногда за выходной) щелью. В качестве диспергирующего устройства монохроматора применяют призмы из различных материалов (LiF, NaCl, KCl, CsF и др.) и дифракционной решетки. Последовательное выведение излучения различных длин волн на выходную щель и приемник излучения осуществляется сканирование поворотом призмы или решетки. Источники излучения - накаливаемые электрическим током стержни из различных материалов. Приемники: чувствительные термопары, металлические и полупроводниковые термосопротивления (болометры) и газовые термопреобразователи, нагрев стенки сосуда которых приводит к нагреву газа и изменению его давления, которое фиксируется. Выходной сигнал имеет вид обычной спектральной кривой.
Достоинства приборов классической схемы: простота конструкции, относительная дешевизна. Недостатки: невозможность регистрации слабых сигналов из-за малого отношения сигнал: шум, что сильно затрудняет работу в далекой инфракрасной области; сравнительно невысокая разрешающая способность (до 0,1 см-1), длительная (в течение нескольких минут) регистрация спектров.
В фурье-спектрометрах отсутствуют входная и выходная щели, а основной элемент - интерферометр. Поток излучения от источника делится на два луча, которые проходят через образец и интерферируют. Разность хода лучей варьируется подвижным зеркалом, отражающим один из пучков.