Физико-химические процессы водоподготовки
Материалы / Физико-химические процессы водоподготовки
Страница 16

Некоторые неорганические иониты:

1. Гранулированные методом замораживания труднорастворимые фосфаты металлов (циркония, титана, хрома, железа, тория, сурьмы и др.), прежде всего, цирконилфосфат (ZrO)m(H2PO4)n с различным отношением m:n, отличающийся высокой емкостью обмена, термической и радиационной устойчивостью и высокой селективностью к ионам цезия, рубидия, калия и аммония, а также таллия. Цирконилфосфат устойчив в концентрированных кислотных и солевых растворах, сохраняя в них высокую ионообменную емкость и избирательность к вышеуказанным катионам.

Цирконилфосфат может быть использован для извлечения из сильнокислых и сильноминерализованных радиоактивных растворов долгоживущего изотопа 137Cs; для разделения продуктов радиоактивного распада урана в атомных реакторах: 89Sr-137Cs, 89Sr-144Cs, 90Sr-90U; для отделения 95Nb и 95Zr от 106Ru; для извлечения ионов таллия из растворов в производстве и при использовании солей таллия.

2. Синтетические титано- и цирканосиликаты, обладающие молекулярноситовыми свойствами цеолитового уровня, высокой обменной емкостью и селективностью к ряду катионов.

3. Труднорастворимый кристаллический оксалат циркония, селективный по отношению к катионам свинца и калия.

4. Труднорастворимые соли поли- и гетерополикислот: фосфомолибдаты, фосфорвольфраматы, вольфраматы, фосфорарсенаты, производные фосфорносурьмяной кислоты, кремнесурьмяной кислот и другие обладающие селективностью к редким щелочным, щелочноземельным и тяжелым металлам.

5. Ферроцианиды щелочных и тяжелых металлов (железа, меди, цинка, молибдена, никеля, титана, олова, ванадия, урана, вольфрама и т.п.), способные к избирательной сорбции ионов Pb+, используются для поглощения Rb, Cs из растворов и Tl+ из водных растворов. Например, с помощью ферроцианида щелочного металла и никеля эффективно извлекается рубидий из отработанного раствора при переработке карналлитовых руд.

6. Нерастворимые сульфиды и гидроксиды металлов. Например, известно о возможности успешной очистки никелевых электролитов от примесей ионов меди, свинца, кадмия, мышьяка, сурьмы, олова, висмута с помощью нерастворимого сульфида никеля, от примесей железа (II) и кобальта (II) с помощью гидроксидов никеля в сочетании с органическим сильноосновным анионитом АВ-17 на конечной стадии очистки.

Многие катиониты, в том числе цеолиты (за исключением клиноптилолита, эрионита и морденита) и глинистые минералы, могут работать только в солевых формах (натриевой, кальциевой и т.д.). Они не могут быть переведены в водородную форму, так как при этом разрушается их структура, и, следовательно, не могут применяться в технологии обессоливания и опреснения сточных и природных вод. Кроме того, обессоливание воды невозможно без одновременного использования анионитов, которые среди неорганических минералов и соединений встречаются весьма редко.

Эти обстоятельства в немалой степени способствовали бурному развитию синтеза органических катионитов и анионитов на основе синтетических органических соединений, получивших широкое применение в технологии обессоливания воды, в гидрометаллургии драгоценных и цветных металлов, в технологии очистки сточных вод и в других отраслях.

ОРГАНИЧЕСКИЕ ИОНИТЫ

Органические иониты - это в основном синтетические ионообменные смолы. Органическая матрица изготавливается путем поликонденсации мономерных органических молекул, таких как стирол, дивинилбензол, акриламид и т.д. В эту матрицу химическим путем вводятся ионогенные группы (фиксированные ионы) кислотного или основного типа. Традиционно вводимыми группами кислотного типа являются -СООН; -SО3Н; -РО4Н2 и т.п., а основного типа: ≡N; =NH; -NH2; -NR3+ и т.п. Современные ионообменные смолы, как правило, обладают высокой обменной ёмкостью и стабильностью в работе.

Иониты способны к набуханию в воде, что обусловлено присутствием гидрофильных фиксированных групп, способных к гидратации. Однако беспредельному набуханию, т.е. растворению, препятствуют поперечные связи. Степень поперечной связанности задается при синтезе ионитов через количество вводимого сшивающего агента - дивинилбензола (ДВБ). Стандартные смолы, используемые для умягчения, содержат 8% ДВБ. Доступные в настоящее время смолы могут содержать от 2 до 20%. В целом степень набухания ионитов определяется количеством сшивки ДВБ, концентрацией гидрофильных ионогенных групп в объеме зерна ионита и тем, какие противоионы находятся в ионите. Обычно однозарядные ионы, особенно ионы водорода и гидроксила, приводят к наибольшему набуханию; многозарядные противоионы приводят к некоторому сжатию и уменьшению объема зерен.

Страницы: 11 12 13 14 15 16 17 18 19 20

Смотрите также

Классификация, количественные определения минеральных удобрений
Минеральные удобрения — это соединения, способные при внесении в почву растворяться и диссоциировать на ионы в почвенном растворе, чрезвычайно необходимые для жизни растений, поскольку соде ...

Вискозиметрия в разбавленных растворах полимеров
  Полимеры, при их растворении в растворителе, значительно увеличивают вязкость раствора. Полимеры используются в качестве сгустителей в таких продуктах, как шампуни и мороженое. Этот эффект ...

Получение алканов,алкенов,алкинов. Важнейшие представители. применение в промышленности
...