Сурьма (Stibium), SbХимические элементы / Сурьма (Stibium), Sb
Сурьма - химический элемент V группы периодической системы Менделеева; атомный номер 51, атомная масса 121,75; металл серебристо-белого цвета с синеватым оттенком. В природе известны два стабильных изотопа 121Sb (57,25% ) и 123Sb (42,75% ). Из искусственно полученных радиоактивных изотопов важнейшие 122Sb (Т1/2 = 2,8 cym), 124Sb (T1/2 = 60,2 cym) и 125Sb (T1/2 = 2 года).
Историческая справка. С. известна с глубокой древности. В странах Востока она употреблялась примерно за 3000 лет до н. э. для изготовления сосудов. В Древнем Египте уже в 19 в. до н. э. порошок сурьмяного блеска (природный Sb2S3) под названием mesten или stem применялся для чернения бровей. В Древней Греции он был известен как stími и stíbi, отсюда латинский stibium. Около 12-14 вв. н. э. появилось название antimonium. В 1789 А. Лавуазье включил С. в список химических элементов под названием antimoine (современный английский antimony, испанский и итальянский antimonio, немецкий Antimon). Русская "сурьма" произошло от турецкого sürme; им обозначался порошок свинцового блеска PbS, также служивший для чернения бровей (по другим данным, "сурьма" - от персидского сурме - металл). Подробное описание свойств и способов получения С. и её соединений впервые дано алхимиком Василием Валентином (Германия) в 1604.
Распространение в природе. Среднее содержание С. в земной коре (кларк) 5 ×10=5 % по массе. В магме и биосфере С. рассеяна. Из горячих подземных вод она концентрируется в гидротермальных месторождениях. Известны собственно сурьмяные месторождения, а также сурьмяно-ртутные, сурьмяно-свинцовые, золото-сурьмяные, сурьмяно-вольфрамовые. Из 27 минералов С. главное промышленное значение имеет антимонит (Sb2S3) (см. также Сурьмяные руды). Благодаря сродству с серой С. в виде примеси часто встречается в сульфидах мышьяка, висмута, никеля, свинца, ртути, серебра и других элементов.
Физические и химические свойства. С. известна в кристаллической и трёх аморфных формах (взрывчатая, чёрная и жёлтая). Взрывчатая С. (плотность 5,64-5,97 г/см3) взрывается при любом соприкосновении: образуется при электролизе раствора SbCl3; чёрная (плотность 5,3 г/см3) - при быстром охлаждении паров С.; жёлтая - при пропускании кислорода в сжиженный SbH3. Жёлтая и чёрная С. неустойчивы, при пониженных температурах переходят в обыкновенную С. Наиболее устойчивая кристаллическая С. (см. также Сурьма самородная), кристаллизуется в тригональной системе, а = 4,5064 ; плотность 6,61-6,73 г/см3(жидкой - 6,55 г/см3); tпл 630,5 °C; tкип1635-1645 °C; удельная теплоёмкость при 20-100 °C 0,210 кдж/(кг × К) [0,0498 кал/(г ×°C)]; теплопроводность при 20 °C 17,6 вт/м × К [0,042 кал/(см × сек × °C)].Температурный коэффициент линейного расширения для поликристаллической С. 11,5 ×10=6 при 0-100 °C; для монокристалла a1 = 8,1×10=6 a2 = 19,5×10=6 при 0-400 °C, удельное электросопротивление (20 °C) (43,045×10=6 ом×см). С. диамагнитна, удельная магнитная восприимчивость -0,66 ×10=6. В отличие от большинства металлов, С. хрупка, легко раскалывается по плоскостям спайности, истирается в порошок и не поддаётся ковке (иногда её относят к полуметаллам). Механические свойства зависят от чистоты металла. Твёрдость по Бринеллю для литого металла 325-340 Мн/м2 (32,5-34,0 кгс/мм2); модуль упругости 285-300; предел прочности 86,0 Мн/м2 (8,6 кгс/мм2). Конфигурация внешних электронов атома Sb5s25r3. В соединениях проявляет степени окисления главным образом +5, +3 и =3.
В химическом отношении С. малоактивна. На воздухе не окисляется вплоть до температуры плавления. С азотом и водородом не реагирует. Углерод незначительно растворяется в расплавленной С. Металл активно взаимодействует с хлором и др. галогенами, образуя сурьмы галогениды. С кислородом взаимодействует при температуре выше 630 °C с образованием Sb2O3(см. Сурьмы окислы). При сплавлении с серой получаются сурьмы сульфиды, так же взаимодействует с фосфором и мышьяком. С. устойчива по отношению к воде и разбавленным кислотам. Концентрированные соляная и серная кислоты медленно растворяют С. с образованием хлорида SbCl3 и сульфата Sb2(SO4)3; концентрированная азотная кислота окисляет С. до высшего окисла, образующегося в виде гидратированного соединения xSb2O5 ×уН2О. Практический интерес представляют труднорастворимые соли сурьмяной кислоты - антимонаты(МеSbO3 ×3H2O, где Me - Na, К) и соли не выделенной метасурьмянистой кислоты - метаантимониты (MeSbO2 ×ЗН2О), обладающие восстановительными свойствами. С. соединяется с металлами, образуя антимониды.
Получение. С. получают пирометаллургической и гидрометаллургической переработкой концентратов или руды, содержащей 20-60% Sb. К пирометаллургическим методам относятся осадительная и восстановительная плавки. Сырьём для осадительной плавки служат сульфидные концентраты; процесс основан на вытеснении С. из её сульфида железом: Sb2S3 + 3Fe Û 2Sb + 3FeS. Железо вводится в шихту в виде скрапа. Плавку ведут в отражательных или в коротких вращающихся барабанных печах при 1300-1400 °C. Извлечение С. в черновой металл составляет более 90%. Восстановительная плавка С. основана на восстановлении её окислов до металла древесным углем или каменноугольной пылью и ошлаковании пустой породы. Восстановительной плавке предшествует окислительный обжиг при 550 °C с избытком воздуха. Огарок содержит нелетучую четырёхокись С. Как для осадительной, так и для восстановительной плавок возможно применение электропечей. Гидрометаллургический способ получения С. состоит из двух стадий: обработки сырья щелочным сульфидным раствором с переводом С. в раствор в виде солей сурьмяных кислот и сульфосолей и выделения С. электролизом. Черновая С. в зависимости от состава сырья и способа её получения содержит от 1,5 до 15% примесей: Fe, As, S и др. Для получения чистой С. применяют пирометаллургическое или электролитическое рафинирование. При пирометаллургическом рафинировании примеси железа и меди удаляют в виде сернистых соединений, вводя в расплав С. антимонит (крудум) - Sb2S3, после чего удаляют мышьяк (в виде арсената натрия) и серу при продувке воздуха под содовым шлаком. При электролитическом рафинировании с растворимым анодом черновую С. очищают от железа, меди и др. металлов, остающихся в электролите (Си, Ag, Аи остаются в шламе). Электролитом служит раствор, состоящий из SbF3, H2SO4 и HF. Содержание примесей в рафинированной С. не превышает 0,5-0,8%. Для получения С. высокой чистоты применяют зонную плавку в атмосфере инертного газа или получают С. из предварительно очищенных соединений - трёхокиси или трихлорида.
Применение. С. применяется в основном в виде сплавов на основе свинца и олова для аккумуляторных пластин, кабельных оболочек, подшипников (баббит), сплавов, применяемых в полиграфии (гарт), и т. д. Такие сплавы обладают повышенной твёрдостью, износоустойчивостью, коррозионной стойкостью. В люминесцентных лампах галофосфатом кальция активируют Sb. С. входит в состав полупроводниковых материалов как легирующая добавка к германию и кремнию, а также в состав антимонидов (например, InSb). Радиоактивный изотоп 12Sb применяется в источниках g-излучения и нейтронов.
Смотрите также
Скандий (Scandium), Sc
Скандий - химический элемент III группы периодической системы Менделеева: атомный номер 21, атомная масса 44,9559; лёгкий металл с характерным жёлтым отливом, который появляется при контакте металла с ...
Исследование и разработка технологии шумопонижающих материалов различного функционального назначения
...